
www.manaraa.com

1



www.manaraa.com

APPROVAL SHEET

Title of Thesis: Clustering and Visualization Techniques for Aggregate Trajectory

Analysis

Name of Candidate: David Alan Trimm,

Computer Science Doctorate,

2012

Thesis and Abstract Approved:

Dr. Penny Rheingans

Professor

Department of Computer Science and

Electrical Engineering

Date Approved:



www.manaraa.com

Curriculum Vitae

Name: David Alan Trimm

Degree and date to be conferred: Doctorate, May 2012

Secondary Education: Richmond Hill High School, Richmond Hill, GA

Collegiate institutions attended:

University of Maryland, Baltimore County, Doctorate Computer Science, 2012

Johns Hopkins University, Master of Science in Computer Science, 1998

Georgia Institute of Technology, Bachelor of Science in Computer Science, 1995

Major: Computer Science



www.manaraa.com

ABSTRACT

Title of Thesis: Analyzing Trajectory Populations Through Clustering and Visualization

David A. Trimm, Computer Science, 2012

Thesis directed by: Penny Rheingans, Ph.D.

Department of Computer Science and

Electrical Engineering

Analyzing large trajectory sets enables deeper insights into multiple real-world prob-

lems. For example, animal migration data, multi-agent analysis, and virtual entertainment

can all benefit from deriving conclusions from large sets of trajectory data. However, the

analysis is complicated by several factors when using traditional analytic techniques. For

example, directly visualizing the trajectory set results in a multitude of lines that cannot

be easily understood. Statistical analysis methods and non-direct visualization techniques

(e.g., parallel coordinates) produce conclusions that are non-intuitive and difficult to un-

derstand. By using two complementary processes—clustering and visualization—a new

approach is developed to analyzing large trajectory sets. First, clustering techniques are

developed and refined to group related trajectories together. From these similar sets, a

trajectory composition visualization is created and implemented that clearly depicts the

cluster characteristics including application-specific attributes. The effectiveness of the

approach is demonstrated on two separate and distinct types of data sets resulting in ac-

tionable conclusions. The first application, multi-agent analysis, represents a rich, spatial

data set. When analyzed using this approach, deficiencies in the underlying artificial in-

telligence algorithms can be determined leading to improved agent performance. Student

course-grade history analysis, the second application, requires adapting the approach for a

non-spatial data set. However, the results enable a clear understanding of which courses are

most critical in a student’s career and which student groups require assistance to succeed.
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This research contributes to methods for trajectory clustering, techniques for large-scale

visualization of trajectory data, and processes for analyzing student data.
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Chapter 1

INTRODUCTION

Due to the large volume of data involved, trajectory population analysis requires new

techniques to organize and present the data to enable sense-making and deeper insight. A

successful analytical approach adds significant value across a wide range of applications by

automatically partitioning the population and accurately presenting trends and characteris-

tics of the resulting groupings. Such conclusions are not available when trajectories are

analyzed individually or by using existing visualization techniques. This research proposes

an approach that automatically clusters trajectory populations into similar sets, which are

then visually analyzed in aggregate to understand each cluster’s structure and trends. The

techniques are applied to both spatial and non-spatial datasets and successfully enable users

to determine unique and innovative results that are not apparent with existing methods.

For the purposes of this research, trajectories are discrete entity-based, temporal-

varying data sets that can be reduced to two-dimensional space with a number of

application-specific attributes. For example, GPS vehicle plots, player trajectories in virtual

environments or gaming events, and animal migratory patterns all fit within this context.

While spatial trajectories have a natural representation within the physical world that can

be plotted or graphed, non-spatial trajectories do not. For example, stock market trends,

sensor readings, and twitter topics represent non-spatial trajectory types. Attributes are

1
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FIG. 1.1. Sooty shearwater migration map. Source:

http://pausetobegin.com/blog/tag/sooty-shearwater-photographs-photographer-migration/

application-specific numerical values that can be directly associated with the trajectory’s

entity, such as demographic data, and therefore remain constant over the trajectory. Alter-

natively, attributes can vary over the trajectory’s course (e.g., a soccer player’s speed while

dribbling the ball). In general, attributes provide insight into (1) the entity following the

trajectory, (2) changes to the entity over time, and/or (3) the environment through which

the entity travels. When trajectories are collected in aggregate over the same domain, the

overall data set is referred to as a trajectory population. Analytical conclusions about the

aggregate trajectories vary based on application. For example, results from automobile

GPS data may reveal vehicle-specific characteristics, local road phenomena, or road con-

gestion during specific hours of the day. Analytic findings could then be used to improve

vehicle designs, repair road issues, or plan new routes to ease congestion. While this exam-

ple delves into a specific type of trajectory data, each application area would have similar

benefits from aggregate analytical techniques.

Animal migratory patterns provide an excellent case study describing the necessity for

trajectory population analysis. Figure 1.1 shows an example of such a domain. With the
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proliferation of widespread global positioning technologies and wireless communications,

it is now possible to accurately track the location of tagged animals over time. If multiple

groups of animals are tagged and tracked over many years, trends in these patterns may

show the effects of global warming or human development on migration. For example,

global warming may affect the animal’s primary food source, leading to the population

seeking out a wider feeding area. Such is the case with the polar bear hunting grounds,

in which the ice flows have melted and become unstable, forcing the species to modify

their hunting activities. Trajectory analysis may also show the effects of human activities

on migratory trajectories. New roads or other developments may force modifications to

the animal’s movement or the development of alternative survival strategies. In both cases,

additional information (e.g., the animal’s weight, the number of offspring), may reveal

aggregate trends when analyzed together.

1.1 Thesis Statement

To effectively analyze large trajectory populations, new techniques and approaches

need to be developed for real-world data sets. Leveraging machine analytics to organize

large data sets and representing the results in intuitive formats provide a way forward in

this problem domain. I claim that clustering and aggregate visualization techniques enable

deeper insight into analyzing two-dimensional, entity-based trajectory populations at scale

than traditional approaches.

My assertion is plausible for three reasons. First, successful analytic approaches for

large data sets require partitioning data into similar groupings. Divide-and-conquer strate-

gies are effective across many domains to efficiently and effectively handle complex prob-

lems. As such, clustering is a natural implementation of the divide-and-conquer strategy

to partition and group data elements into like sets. By clustering trajectory populations,



www.manaraa.com

4

the similar elements are grouped together which can then be analyzed to discover trends in

each individual grouping. Alternatively, if one attempted to analyze dissimilar trajectories,

comparing the corresponding and appropriate trajectory subcomponents would be difficult

to impossible. In addition to forming the basis for an analytic strategy, clustering can also

facilitate the visual composition process.

Second, visualization techniques intuitively depict two-dimensional spatial data sets.

By leveraging human perception, trajectory data can be successfully rendered enabling a

comprehensive understanding. Furthermore, by leveraging color to convey statistical prop-

erties of the trajectories, aggregate trends in the data become apparent. Furthermore, color

is commonly used across a variety of visualization applications to portray data values.

Based on existing visual composition techniques combined with trajectory representations,

a successful composition can be created that validates the clustering stage and provides

insight across multiple facets of the trajectory population. While statistical analysis tech-

niques could be used to both validate clustering and depict trends, results are often unintu-

itive and difficult to verify without visual aids.

Third, once clustered and composited together, the resulting aggregate trajectory vi-

sualizations will enable new methodologies for analyzing this type of data. By providing

a new method to combine the data into an intuitive rendering, new methods to look at the

data will be developed that lead to novel conclusions. Analytic trade craft evolution is often

a result of new methods to visualize and render the data. Once initial results are provided

to domain experts, refinements in both the visualization approach as well as the analyti-

cal process can occur. Evolution of analytic techniques often result from new approaches,

and, by providing intuitive depictions that leverage visual techniques, new inspirations for

understanding the data can be created.

I set out to prove this thesis by developing techniques to cluster two-dimensional

trajectories and visualize the results in aggregate. To determine the effectiveness of this
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approach, I applied the techniques to two separate application domains, found novel dis-

coveries, and reviewed my results with domain experts. Through this process, I develop

additional analytic methodologies that leverage the approach to successfully discover and

understand trends in student course-grade history data.

1.2 Approach and Results Summary

Before trajectories can be effectively analyzed, they need to be grouped together into

common sets that share characteristics such as spatial similarities. Clustering is a natural

grouping mechanism for organizing similar trajectories into distinct partitions over the en-

tire population. To successfully cluster trajectories, distance metrics need to be established

that accurately determine how similar trajectories are to one another. I propose and apply

an effective distance metric for two-dimensional spatial representations and also provide

a method for non-spatial data sets (i.e., those that lack a natural two-dimensional repre-

sentation). The two-dimensional distance metric also has a natural companion method for

providing an “average” trajectory for a clustered trajectory set. The average trajectory al-

gorithm is specifically tailored to enable later stages in the analytical pipeline to visualize

the trajectories in aggregate.

Once trajectories have been successfully grouped into related clusters, visualization

techniques provide a complementary process to depict the cluster’s structure and attribute

values. This research develops and implements a technique that accumulates thousands of

spatially related trajectories to depict trends in the cluster’s trajectory attributes. In addition

to yielding insight into the attribute trends, the visualization characterizes the overall shape

and structure of the cluster and how it varies and fluctuates over time. Consequently, the

visualization verifies and validates that the clustering stage successfully grouped similar

trajectories from the population.
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To demonstrate the effectiveness of this approach, both the clustering and visualization

processes are applied to two distinct applications. The first application, simulated robotic

soccer competitions, represents a spatial application where two-dimensional trajectories

are a common feature of the simulation. Since the simulation takes into account many dif-

ferent variables about the soccer match, the data set provides a rich set of attributes that can

be used to derive analytical conclusions about successful artificial intelligence strategies.

Additionally, since the goal of the simulated soccer matches is to foster development in

multi-agent behavior research, the techniques have applicability to a wider range of artifi-

cial intelligence and multi-agent applications (e.g., flocking behavior).

The second application, college-level student course and grade history, represents a

non-spatial application. In order to apply the techniques outside of a traditional spatial

application, the approach was tailored to create a spatial representation that captures the

relevant student and course characteristics. While spatial applications can be clustered

using the proposed distance metric, modifications to the metric were necessary to group

related students. Once successfully partitioned in their natural groups, each individual

student’s history was then mapped into a two-dimensional representation that captured the

relevant aspects. These aspects enabled a higher level of understanding for each of the

resulting clusters to include areas where students deviated from one another in their course

work and where course grades significantly fluctuated. In addition to clustering, students

were also partitioned by their course-grade bins for gateway, core, and other groupings for

comparison using a “small multiples” approach. These natural groupings revealed deeper

insight than the proposed clustering approach.
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1.3 Contributions

This research provides several substantial contributions including (1) methods to suc-

cessfully cluster trajectory populations for further analysis, (2) visualization techniques for

large sets of related trajectories, and (3) analytical methodologies for student course-grade

history data. By developing complementary processes that cover multiple stages of the

analytical work flow, unique contributions are delivered that are effective for real-world

problems involving large trajectory populations.

Although there are multiple approaches to trajectory clustering, few are used in tan-

dem with aggregate visualization techniques. Furthermore, the implementations for the

trajectory clustering algorithms also vary significantly—application dependencies neces-

sitate a careful choice to fully exploit the underlying data. For example, I chose to use

parametric representations as the underlying model in both use cases. However, a length-

based representation is used for the first application, whereas a time-based version worked

better for the second application. In cases where the trajectories are naturally constrained

(e.g., GPS vehicle data), correlating the closest spatial location delivers the correct solu-

tion. By reviewing the results of the clustering stage for each use case, a decision process

for the underlying representation is derived to optimize the follow-on visualization stage.

In addition to the clustering phase contributions, I develop and apply a sophisticated

algorithm to visualize aggregate trajectory data. While a few application-specific tech-

niques exist, this approach provides a general solution that works across several real-world

problem domains. While it does have limitations and trade offs, it can be used at scale to

provide an aggregate view of a clustered trajectory population. Through the complemen-

tary clustering process, the cohesive nature of the similar trajectories is exploited—this

enables a solution within the visualization phase that would not be possible in isolation.

Typically, clustering is applied as a post-process to the visualization stage. For instance,
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edge bundling algorithms (Holten & van Wijk 2009) use clustering on the geometric com-

ponents to achieve a more effective appearance. However, by first organizing the data so

that similar elements share common characteristics, successive analytical stages are fed in

a complementary fashion to deliver an effective solution.

Lastly, through my analysis of the student course-grade history data, analytical

methodologies are developed to identify critical courses for student success. By apply-

ing the techniques to a real-world data set and reviewing them with faculty members, an

effective approach is developed that groups students across various course-grade combi-

nations. When these natural groupings are rendered using the aggregate visualization al-

gorithm, clear dependencies for student success become apparent—these results can then

recommend specific changes to the curriculum to improve the program’s success.

1.4 Overview

The rest of the paper is organized as follows. In Chapter 2, previous works devoted to

trajectory clustering, visualization, and multi-agent analysis are explored with an emphasis

on techniques focused on two-dimensional trajectories. Chapter 3 describes my approach

to clustering and visualizing trajectory populations. In order to use existing clustering

approaches, a distance metric for two-dimensional trajectories is developed that also com-

plements the visualization process. Chapter 3 also explains the visualization composition

process. Since the visualization must verify and validate the clustering process in addition

to depicting trends in trajectory attributes, Chapter 3 defines the goals and objectives for

the visualization techniques. The visual aggregation method is then described in detail with

two separate rendering methods discussed and contrasted. In order to show the applicabil-

ity of the approach, two case studies are presented to show the effectiveness. The first case

study, shown in Chapter 4, examines RoboCup Soccer simulations using both traditional
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visualization techniques and the approach developed by this research. The second case

study, documented in Chapter 5, applies the approach to student course history data which

demonstrates the applicability in non-spatial domains. Both applications fully explore the

benefits of the approach as well as shortcomings. These shortcomings are addressed in

Chapter 7, which explores future research directions for extending the proposed approach.
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Chapter 2

PREVIOUS WORK

Previous work related to trajectory analysis falls into three distinct but interrelated

categories: trajectory clustering, entity and agent analysis, and trajectory visualization.

Trajectory clustering focuses on grouping related trajectories or assembling multiple tra-

jectory subcomponents together. Entity and agent analysis examines methods to understand

and derive conclusions from agents generating trajectories. Finally, trajectory visualization

deals with ways to visualize individual or grouped trajectories. The following chapters will

review, compare, and contrast each of these areas.

2.1 Trajectory Clustering

Palma et al. (2008) identify interesting locations from mobile device data by clus-

tering subcomponents within the trajectory data for stops and starts. Their method uses

density-based clustering to identify and grow these subcomponent trajectories. While the

work is applicable to the agent analysis described in Chapter 5, the overall goals and ob-

jectives differ from this research. For example, their efforts are geared towards extracting

feature vectors that are relevant to interesting spatial locations. Much of their work deals

with extracting meaning from trajectories and developing the necessary heuristics and rules

to automatically find previously unknown locations of interest in cities. However, Palma’s

10
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techniques use a relatively simplistic visualization that could benefit from aggregate visu-

alizations and therefore be complementary to my approach.

Lee et al. (2007) develop a bottom-up approach to find common sub-trajectories in

trajectory sets. While the density-based approach yields strongly connected trajectories,

the technique is difficult to apply to spatially unconstrained trajectory sets. For example,

the heuristic for merging related trajectories is sensitive to both the spatial location and

the direction of the subcomponents. With unconstrained data sets, these sensitivities are

difficult to separate from one another, causing unassociated subcomponents to be grouped

together. I implement Lee’s algorithm in Chapter 3, but as with many of the other trajec-

tory clustering approaches, Lee’s work could leverage aggregate visualizations to better

understand the effectiveness of the clustering algorithm and the associated attributes.

Lee et al. (2008) develop two types of clustering for identifying region-based and

trajectory-based elements. Region-based clustering identifies areas where all of the en-

closed sub-trajectories move in the same direction while trajectory-based methods con-

struct longer chains of sub-trajectories using density-based clustering. Their approach ap-

plies more to machine learning but has wider applicability to both constrained and un-

constrained trajectory data sets. For example, the technique effectively separates non-

constrained locales from constrained corridors of movement. While the clustering approach

is significantly more advanced than my use of clustering, Lee’s approach could be aided

by aggregate visualizations, especially within the trajectory-based methods. However, the

region-based clustering results would need a separate approach for aggregate visualization

because the data is not cohesive.

Jeung et al. (2008) discover convoys (entities that move together) in temporal-spatial

trajectory datasets. Their methods are complementary to my approach and could signifi-

cantly benefit from the proposed aggregate visualizations, especially as they relate to show-

ing both the variability and the associated attribute values. Verhein (2009) develops a sep-



www.manaraa.com

12

arate approach with similar goals. His efforts refine trajectory sets using Spatio-Temporal

Association Rules (STARs) to identify group behavior while overcoming noise in the data

sets and resolving overlap.

2.2 Entity and Agent Analysis

There are several research areas and commercial activities directly related to path

analysis. GeoTime, a commercial visualization application developed by Oculus (Kapler

& Wright 2004), is arguably the state of the art for analyzing paths and associated events.

In addition to visualizing both the spatial and the temporal aspects of paths within a sin-

gle comprehensive view, the application provides interactivity to enable an analyst to ex-

plore the data. To save analysts time, the application can also automatically correlate paths

against the entire data set. However, on the visualization side, GeoTime appears to be un-

able to display thousands of paths at the same time, and the automated assistance is mostly

constrained to repetitive tasks.

Several methods have been developed to analyze movement in virtual worlds. Bow-

man et al. (1998) developed a way to evaluate how users move within virtual worlds. These

researchers sorted movement samples taken from virtual environments into different cat-

egories and then evaluated the success of each sample for specific tasks. Statistics were

then gathered based on the assigned categories and each individual sample. However, the

trajectories themselves were not directly analyzed. Zanbaka et al. (2005) analyzed the

same type of movement within virtual worlds as Bowman et al. However, these researchers

visualized the aggregation of the trajectories in a manner similar to the straightforward ap-

proach described in the introduction. As expected, the view was quite cluttered, leading

the researchers to call this a “Spaghetti Plot Visualization” (similar to Figure 2.1). The

researchers also created an aggregate view of how long each virtual user remained in a
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FIG. 2.1. Spaghetti plot. Multiple trajectories can be overlaid on top of a contextual back-

ground, but the image is difficult to analyze and understand, especially when colored with

trajectory attributes.
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location, referred to as dwell time, which better handled the volume of data. Chittaro et

al. (2006) developed a tool to visually analyze entity movement within 3D virtual environ-

ments. The goals were to design better environments and to study user behavior. Aggregate

trajectory data were successfully visualized using vector fields to represent flow and density

graphs to show congestion.

Thawonmas et al. (2008) examined trajectories from an online game to find land-

marks. They proposed detecting landmarks by clustering the distribution of visiting players

and visualized these clusters with multidimensional scaling. While their methods provided

unique insight into player behavior as it relates to the online game, they did not visualize

the actual trajectory data in aggregate.

Several recent publications have focused on real-world trajectory data. Andrienko and

Andrienko (2008) developed a useful ontology for trajectory analysis. They examine large

amounts of GPS-derived data to determine traffic congestion and trends in road use. They

provide several new visualizations to understand the data across days of the week and the

spatial dependencies (e.g., congestion within a particular map grid). Furthermore, they ag-

gregate data through the use of clustering techniques. Willems et al. (2009) investigated

marine vessel movement data and created kernel density visualizations. By manipulating

the kernel parameters, overview and detail views were generated, providing insight into

shipping lane activity. In addition to the vessel density, velocity was also rendered, depict-

ing potentially dangerous situations involving slow-moving ships.

2.3 Trajectory Visualization

In addition to the visualization techniques already described, flow visualization is the

most similar technique to this research. Primarily because of fluid dynamic simulation, the

most common resultant data are particle trajectories that need to be aggregated for analy-
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sis. Laramee et al. (2004) provide an excellent summary of the various flow visualization

techniques. In particular, the closest approach is the dense, texture-based flow visualiza-

tion type that Laramee et al. describe. Several important differences exist between flow

visualization and this approach. Flow visualization primarily works with datasets where

local phenomena exhibit similar tendencies. For example, in the case of air tunnels and

currents, the particles of interest are perturbed in similar ways. My approach is to separate

out via clustering each unique flow pattern for further composition. Furthermore, because

clustering is applied prior to visualization, the resulting composition consists of flows that

are fairly uniform throughout the visualization.

Research into more effective use of parallel coordinate visualizations is also similar

to this approach. For example, visualization techniques that provide aggregate depictions

of trends in multi-variate data. Yang et al. ( 2003) develop multi-resolution views using

hierarchical clustering to group similar parallel coordinate data sets. Similarly, Johansson

et al. ( 2005) cluster large parallel coordinate datasets in order to show the underlying

structure of the data as well as statistical properties. My approach differs in several impor-

tant aspects. First, the trajectory data sets do not fit well into the base structure for parallel

coordinations. For example, in both the spatial and non-spatial cases, the temporal aspects

play a crucial role but do not equate to different dimensions in the data. In the first use

case, parallel coordinate aggregation (and other traditional visualization techniques) are

applied to the extracted properties of the spatial data. Second, varying trajectory lengths

occur often in the data—both in time/duration and in actual spatial length. While parallel

coordinates could be modified to handle different spatial lengths, the fit would be imper-

fect. Furthermore, parallel coordinate visualizations are specifically tailored to multiple

one-dimensional attributes. When applied to naturally spatial datasets (i.e., two- or three-

dimensional data), the intuitive nature of the data is lost. In this research, I was able to

successfully depict the second use case, student-course data, in a parallel coordinates-like
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view. In fact, the visual composition approach can be viewed as a more generic parallel

coordinates view for two-dimensional datasets.
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Chapter 3

APPROACH

The approach to trajectory population analysis is to first cluster the population into

similar partitions or sets. Once trajectories with similar spatial properties are grouped to-

gether, the composition visualization process can then be used to capture the overall spatial

representation of the clustered trajectories. In addition to characterizing the average trajec-

tory for the group, the visualization also shows deviations and variability across each trajec-

tory set. Furthermore, through the use of both color blending and weaving, two approaches

to coloring the visualization, the composition depicts an additional attribute related to the

cluster and commonalities across the clustered partition. The remainder of the Approach

chapter is broken into three distinct sections. Figure 3.1 provides a graphical depiction of

FIG. 3.1. Approach overview

17
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the overall steps associated with the implementation. In the figure, the trajectory popula-

tion at the left is fed into the clustering algorithm, which groups related cluster trajectories

together. Each cluster is then fed into the visualization composition process to be rendered

by the visual composition process. A “small multiples” approach (Tufte 1990) is then

used to compare and contrast the resultant visualizations as represented by the multiple

images (i.e., stacks in the diagram). Section 3.1 discusses trajectory representation and

defines the similarity metric and averaging algorithm that were used by the clustering oper-

ation. Section 3.2 defines the approach to clustering the trajectory population and various

design decisions and algorithms chosen to be most effective for feeding the visualization

composition process. Finally, Section 3.3 delves into the steps needed to composite the

trajectory clusters into an aggregated composition, which depicts the average trajectory, the

variability in individual trajectories, and the attributes associated with each entity.

3.1 Trajectory Representation, Comparison, and Averaging

A trajectory is defined as a discrete entity-based, temporally varying data sequence

that can be reduced to two-dimensional space with a number of application-specific at-

tributes. In order to use the trajectory, a trajectory is defined in the following parametric

representation:

Definition 1. Trajectory: A trajectory is a list of space-time-attribute points { p0 =

(x0, y0, t0, a0,0, a0,1, ...) , p1 = (x1, y1, t1, a1,0, a1,1, ...) , ... , pn = (xn, yn, tn, an,0, an,1, ...)

} where xi, yi, ai,j ∈ � and ti ∈ [0...1] and t0 = 0.0 and tn = 1.0 and t0 < t1 < ... < tn.

In addition to the data points, a trajectory has an associated entity (e.g., a person, player,

actor). Attributes can be fixed for a trajectory, fixed for the entity, or change over the course

of the trajectory.

In practice, distance along the trajectory is used for the parametric representation.
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However, duration along the trajectory may also be used and will produce equally valid

results that may be more appropriate when entities frequently start or pause at spatial loca-

tions (e.g., GPS data where vehicles are delayed by congestion or traffic lights). Duration

is also used for non-spatial applications in which all of the entity activity can be binned into

discrete time intervals—the second use case, student course history data, falls into this cat-

egory. Lastly, for spatial applications with constrained corridors (e.g., vehicle GPS data),

trajectory points are best compared and correlated with their closest neighboring trajectory

points.

In order to compare and average trajectories, intermediate values that do not exactly

align with the discrete trajectory parameterization need to be calculated. In order to inter-

polate these values, the following equation is used:

Definition 2. To calculate an arbitrary point, t, along the trajectory, i is chosen such

that ti < t < ti+1. The proportional time value is calculated, d = (t− ti)/(ti+1 − ti). The

remaining values for the arbitrary point can then be calculated as follows, x = (d ∗ (xi+1 −

xi)) + xi and y = (d ∗ (yi+1 − yi)) + yi.

Clustering algorithms require a similarity metric for determining how individual ele-

ments (i.e., trajectories) compare with one another. In addition to the actual comparison

or distance metric, several clustering algorithms also require an averaging function for al-

ready grouped elements to be iteratively compared with non-grouped elements. Both the

similarity metric and average-trajectory calculation use the same fundamental algorithm.

The trajectory comparison algorithm needs to satisfy several high-level goals. First,

it must correctly model high-frequency sections of each trajectory. High-frequency sec-

tions are defined as having significant changes in trajectory curvature or direction over a

short section of the trajectory. The comparison algorithm must also efficiently process low-

frequency trajectories (i.e., trajectories that have few curves or little variability in segment

orientation). Lastly, the algorithm should provide the same similarity score for two trajec-
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tories that have the same spatial characteristics but vary in the number of points or segments

that define the trajectory. These two straightforward goals ensure that similar trajectories

will be efficiently compared and will take into consideration all of the points along the

trajectory.

The algorithm satisfies the first two principles (high- and low-frequency trajectories)

and provides similar but not exact scores for the last design criterion (same spatial shape).

The last design criterion can be accomplished if redundant points (i.e., those that are co-

linear to the previous and subsequent trajectory points) are removed prior to the comparison

algorithm.

Since the discrete parametric values determine the frequency of the trajectory, the

parametric values form the basis for the comparison algorithm. First, the algorithm gath-

ers all of the parametric values from the two trajectories. Duplicate parametric values

are then removed, leaving only unique values. Next, for the remaining parametric values,

the corresponding spatial locations from both trajectories are determined (interpolated as

necessary), and their spatial, Euclidean distances are fed into a root mean square (RMS)

calculation. Since a trajectory can only change direction at a parametric value, the pro-

posed distance comparison correctly captures high-frequency sections. Furthermore, low-

frequency trajectories are efficiently processed since they contribute few parametric values

to the algorithm. The algorithm can be summarized as follows:
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FIG. 3.2. Trajectory distance comparison. The red squares indicate locations where inter-

polation is required to align all of the parametric values across both trajectories with one

another.

Algorithm 3.1.1: TRAJECTORYSIMILARITY(Trajectory1, T rajectory2)

Tset ←empty

for each t ∈ Trajectory1

do Tset ← t

for each t ∈ Trajectory2

do Tset ← t

sum ← 0

for each t ∈ Tset

do

⎧⎪⎨
⎪⎩
Distance = EUCLIDEANDISTANCE(POINT(Trajectory1, t), POINT(Trajectory2, t))

sum ← sum+Distance ∗Distance

returnSQRT(sum/|Tset|)

The Point function returns the interpolated spatial location on the specified trajectory

for the specified parametric value t.
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FIG. 3.3. Closest point comparison. This method fails if the trajectories have the same

point value but in reverse chronological ordering. The two red line show the initial set of

parametric values that are compared (incorrectly).

Figure 3.2 shows a graphical depiction for comparing two trajectories. In the figure,

the parametric values for each trajectory are listed as the “t” value. The red lines show

which points would be compared, and the red text with the “(i)” labels show where trajec-

tory points would need to be interpolated to provide an accurate comparison. In the figure,

every red line is added to the root mean square calculation.

An alternative to using the parametric representation for comparison is to use the clos-

est point without regard to its trajectory location (Andrienko & Andrienko 2008). In gen-

eral, this technique works well if the trajectory population is constrained to fixed corridors.

For example, vehicle GPS data can be compared via closest-point comparison because the

data has already been constrained (Rogers, Langley, & Wilson 1999). However, for the

generic case where the trajectory data is not constrained, the closest point algorithm fails

to correctly model the trajectories for comparison. Instead, trajectories that may have co-

inciding points but vary in their temporal ordering may be incorrectly classified as similar

(for example, the reverse trajectory would have a high similarity score but would not be
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FIG. 3.4. Trajectory average example. The average trajectory, in red, is created by

assembling all of the parametric points from the contributing trajectories, in black.

viable for composition—Figure 3.3 shows this example).

The requirements for the trajectory averaging algorithm are the same as those for the

distance comparison—namely, that high-frequency sections are correctly captured, low-

frequency trajectories are efficiently processed, and spatially identical trajectories produce

the same results. Since the trajectory averaging algorithm is modeled after the distance al-

gorithm and based on the parametric values, the first two requirements are satisfied. Unlike

with the distance algorithm, the third requirement is also satisfied. Since many trajectories

may need to be averaged at once, the averaging algorithm first gathers the discrete paramet-

ric values from all of the trajectories to be averaged. As with the distance comparison, the

parametric values are de-duped and used to determine the appropriate points along the tra-

jectories to average. The parametric values are also sorted to correctly order the values for

the average trajectory. To calculate one of the average points, the corresponding parametric

value is used to determine the spatial location on all of the contributing trajectories. These

locations are then averaged together to determine the point on the average trajectory. The
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FIG. 3.5. Parametric values for average trajectory. If the parametric values for the average

trajectory are re-calculated based on the average trajectory’s length, errors will occur in

future comparisons and averaging operations.

final average trajectory is then formed by linking these averaged points together into a set

of discrete line segments. An example of the trajectory averaging results is shown in Figure

3.4. In the figure, the red trajectory depicts the average of the clustered trajectories (shown

in black). The discrete values are also shown as small circles along each trajectory—as one

can see, the average trajectory has many more discrete locations since all parametric values

from the clustered trajectories are used.

In order for future comparison algorithms to work correctly, the parametric values

assigned to the points on the average trajectory are not based on the distance (or dura-

tion/fixed time intervals) along the average trajectory. Instead, the parametric values retain

the values calculated during the averaging algorithm. This ensures that both future compar-

isons and averaging operations faithfully model the original data points. Figure 3.5 depicts

an extreme example where a re-calculation of the parametric values would cause errors in

future comparison operations. In the figure, the middle section of the average trajectory

(red) shows the problematic parametric values. Since the average trajectories segment is

orthogonal to both of the contributing trajectories, the average trajectory becomes distorted
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(i.e., shortened even though both contributing trajectories have a lengthy section at that

location).

The proposed averaging algorithm produces trajectories whose number of points are

the sum of the number of points of all of the contributing trajectories. Since the number of

distinct parametric values from all of the trajectories is used and identical occurrences of

parametric values are rare, the number of points in the average trajectory grows multiplica-

tively with the number of contributing trajectories, creating a performance bottleneck for

the clustering operations. Line-simplification algorithms (Hershberger & Snoeyink 1992)

can be applied to significantly reduce the computational requirements for successive clus-

tering iterations but are not needed for the data sets in the case studies. As with the av-

eraging algorithm, the line-simplification approach would need to maintain the original

parametric values and not be re-parameterized on the simplified trajectory. Once simpli-

fied, the trajectory can then be used for future distance comparisons. It is recommended

that the original average trajectory be used for successive averaging operations to decrease

the accumulated error.

3.2 Clustering

Before the trajectories can be visualized, the trajectory population needs to be orga-

nized into related sets or groupings. By only compositing similar trajectories in a single

visualization, the cohesive nature of the spatial representations can be exploited to com-

posite the trajectories together. This cohesive nature enables the visualization to maintain

the average shape of all of the trajectories and to bring out the variations in the trajectory

attributes for analysis. If, on the other hand, randomly chosen trajectories were composited

together, the average shape would have no meaningful representation and fail to provide a

context for comparing the trajectory-related attributes.
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Less Similar
All Paths

Single Paths

FIG. 3.6. Hierarchical clustering. To determine a distinct, non-overlapping set of clusters,

a cut of the tree must be taken. The cut is depicted as the red elements in the tree.

In order to organize the trajectory population into related sets, cluster analysis is used

on the trajectories to determine which are related. There are many clustering approaches

that can be used. For the use case datasets, hierarchical clustering is used. Hierarchical

clustering is a bottom-up approach that iteratively merges the two most similar elements

within the data set, forming a new element until only a single grouping remains. For the

first use case, similarity is determined by the distance metric, as defined in the last section.

The new element is represented as the average of the merged elements and is used for

further comparisons. In order to maintain the relationship between the merged elements and

the new element, the hierarchical clustering algorithm represents the merger as a parent-

child relationship in a binary tree. The algorithm continues to merge similar elements

until only one remains that forms the root of the binary tree. Once finished, all of the

original data elements exist as leaves of the tree while the interior nodes consist of averaged

representations. The root element represents the average of all of the trajectories within the

dataset.

In order to find a distinct set of non-overlapping clusters, a cut of the tree is taken,

as shown in Figure 3.6 (Ferral 2004). The cut is accomplished by a recursive pre-order

binary tree traversal that examines the root of the subtree before traversing the left or right

subtree. At each subtree’s root, the cut algorithm compares the maximum distance for any
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FIG. 3.7. Cluster centers. Once clustered, the following trajectories represent the cluster

results for the RoboCup data set.
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of the subtree’s leaf elements (i.e., the original trajectories) against the average trajectory

represented by the current subtree root. If the maximum distance is less than an empirically

derived threshold, the entire subtree is considered a complete cluster and the traversal is

halted for this subtree’s children. If the maximum distance is greater, then each child is

recursively examined until the maximum distance falls below the threshold. The threshold

was empirically determined to maximize the spatial cohesion (i.e., spatial similarity of the

trajectories) while grouping as many trajectories together as possible. Figure 3.7 shows

the resultant average trajectories for the first application, RoboCup, after clustering. The

figure shows the average ball trajectory for the clustered plays within the tournament, and

the width of each line corresponds to the number of trajectories within the cluster. In

summary, the algorithm can be represented with the following pseudocode:

Algorithm 3.2.1: RECURSIVETREECUT(Root, Threshold)

if RootisLeaf

then ADDCLUSTER(RootTrajectorySet)

AverageTrajectory ← TRAJECTORYAVERAGINGALGORITHM(RootTrajectorySet)

for each trajectory ∈ RootTrajectorySet

do MaxDistance ← TRAJECTORYSIMILIARITY(AverageTrajectory, trajectory)

if MaxDistance < Threshold

then ADDCLUSTER(RootTrajectorySet)

else

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

RECURSIVETREECUT(CHILD(Root, Right), Threshold)

RECURSIVETREECUT(CHILD(Root, Left), Threshold)

Hierarchical clustering was chosen for several reasons. First, common clustering tech-
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niques (e.g., K-means (Berkhin 2002)) require a pre-established notion for the number of

clusters. Second, by dynamically re-cutting the resultant tree, the optimum number of clus-

ters can be derived through empirical analysis, which yielded spatially cohesive clusters for

the visualization process. Third, hierarchical clustering was tractable with the number of

trajectories in both use cases. Density-based clustering algorithms were explored, since

previous works had successfully processed spatial trajectory sets (Lee, Han, & Whang

2007). However, these results separated the trajectories into piecewise data elements for

re-assembly during the clustering process. For my application, I wanted to maintain the

connectivity between the trajectory and the entity creating the trajectory for follow-on anal-

ysis. The density-based approach does yield motivating results for spatially constrained

applications such as GPS or other fixed-corridor applications. For example, Figure 3.8

shows the results from applying density-based clustering against GPS data. Since the data

is directionally cohesive, especially in constrained local areas, the density-based approach

yields excellent results since there is little ambiguity in which sub-trajectory components fit

together. However, when applied to the RoboCup data set, the algorithm produced mixed

results due to the unconstrained nature of the player activities. Figure 3.9 shows the initial

results when the density-based method was applied. The algorithm was unable to construct

cohesive trajectories due to the many different directions taken within the small locales.

3.3 Visualization

The trajectory composition structure needs to show the overall spatial characteristics

of the cluster and the trend of the trajectory-related attribute. The spatial characteristics

provide the viewer with an overall feel for the cluster’s compactness, the density and gen-

eral shape of the clustered trajectories, and where spatial variance occurs along the tra-

jectories. The trajectory-related attribute requirement captures how an application-specific
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FIG. 3.8. Density-based clustering (constrained data). For GPS and other spatially con-

strained applications, density-based clustering works extremely well to create continuous

trajectories.
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FIG. 3.9. Density-based clustering (unconstrained data). For unconstrained data sets, the

density-based approach had difficulty growing a cohesive trajectory through the data set.
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FIG. 3.10. Over- and underrepresentation diagram. Curves in the average trajectory (red

line) cause areas of over- and underrepresentation (dotted pie slices) for contributing tra-

jectories on the curve’s outside and inside, respectively.

attribute changes over the course of the clustered trajectories and the variance among them.

Together, these features enable a viewer to gauge the success of the clustering phase, deter-

mine the dependencies of the attribute over the trajectories, and understand the variability

in the attribute.

To satisfy these composition goals, the cluster’s average trajectory was chosen as a

common frame of reference. Each clustered trajectory, called a “contributing trajectory”

throughout this section, is transformed to the reference frame for composition. The trans-

formation then ensures that the contributing trajectory accurately influences the appropri-

ate pixels in the common reference frame. The challenge for the transformation stage is

to overcome areas where the average trajectory has high curvature. In these locations,

two problems occur: over- and underrepresentation of the transformed trajectories. For

example, trajectories on the outside of the curve become over-represented because they

sweep across a wider radius. Trajectories on the inside suffer from the opposite problem—

underrepresentation—because they are “pinched” on the inside track. This means that over-
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FIG. 3.11. Over- and underrepresentation example. Note the overrepresented region to-

wards the top of the trajectory (yellow) and the underrepresented section opposite. The

underrepresented area causes legitimate values to be overwritten by the incorrect values.
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represented trajectories will occupy a larger area than their under-represented equivalents

in the final composition. Figure 3.10 shows a notional diagram of the areas in contention

as dotted pie slices around the average trajectory’s points. For the first set (from the left),

the top slice indicates overrepresentation will occur—overrepresentation does not impact

other valid areas within the visualization but instead causes the same value to be replicated

over the width of the slice. However, underrepresentation occurs on the lower half of the

first slice. Unlike overrepresentation, underrepresentation does interfere with legitimate

parts of the visualization. Because the slice covers the area for two trajectory segments,

a decision has to be made for what data will be represented. Figure 3.11 depicts a real-

world example of this problem from the robotic soccer data. In the figure, the upper bend

over-represents a single set of data points as they sweep around the edge of the diagram.

The under-represented parts are “crimped” in the lower part of the same curve. This fig-

ure also depicts a limitation in the naive approach to compositing the trajectories: if over-

and underrepresentation areas are not resolved prior to composition, then legitimate data is

overwritten by the simple approach. To consistently transform the contributing trajectories

and ease the tension from over- and underrepresentation, a modified Level Set approach

was used to construct a transformation algorithm.

3.4 Average Trajectory Transformation

Level Sets (Sethian 1999) model the expansion of a two-dimensional boundary over

time from an initial starting condition. The starting condition represents the boundary at

the initial time (i.e., t0). By iteratively expanding the boundary, the Level Set algorithm

determines how the boundary propagates and when it will reach a particular location. For

a boundary that expands at a constant rate, the time to reach a point is equivalent to the dis-

tance to the initial boundary. Figure 3.12 depicts two examples of the Level Set algorithm.
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FIG. 3.12. Level set examples. Level Sets are initialized with a starting condition (left)

and record the expansion time from that starting condition (right).
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FIG. 3.13. Level set construction for trajectory cluster.

The initial starting conditions are shown on the left side of the figure, and the results of the

Level Set algorithm are on the right. The coloring of the results represents the boundary

expansion time (and distance from initial boundary starting condition). Purple represents

t0. The colors then transition from purple to blue, cyan, green, yellow, and finally, red,

which are the points last reached by the boundary and are the furthest from the starting

condition.

In order to construct the transformation, Level Sets are used to capture the boundary

of the average trajectory (the initial starting condition) as it expands across the rendering

surface. This expansion captures the distance of each pixel on the rendering surface from

the average trajectory—recall that time and distance are equivalent for boundaries that

expand at a constant rate. Due to the Level Set properties, areas of underrepresentation

are resolved inline with the stated goals—i.e., areas of contention are correctly annotated

with the closest distance and the corresponding parametric value. Overrepresentation still

occurs and is an area of future work. The lower half of Figure 3.12 shows an example of

a Level Set for an average trajectory. The “pinching” occurs on the inside of the “C”, but

the Level Set gives a smooth seam across this area. As an example, Figure 3.13 shows

the original trajectories (left), the average trajectory (in red, middle tile), and the resulting
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FIG. 3.14. Over- and underrepresentation correction.

Level Set for the trajectory (right).

The Level Set algorithm is further modified to propagate, and capture, the parametric

values from the average trajectory. The end result for the modified Level Set algorithm

is that, for each pixel, the distance to the closest point on the average trajectory and the

parametric value at that point are captured. Figure 3.10 depicts the information stored for

two such pixels. In the figure, the closest distance is shown in green and the parametric

value at that closest point is enumerated (t value). In the first pixel’s case (t = 0.2), its

associated parametric value is the same as the discrete average trajectory point forming

the first bend and occurs in an area of overrepresentation. The second pixel’s parametric

value (t = 0.8) is interpolated along the average trajectory’s last segment. Since the value

was interpolated and not from a discrete point, no over- or underrepresentation will occur.
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Figure 3.14 shows a trajectory composition using the Level Set method to resolve under-

and overrepresentation. Note that in the figure, abrupt changes in attributes are no longer

apparent as with the earlier examples (i.e., Figure 3.11).

The average trajectory’s end points are handled as special cases during the Level Set

algorithm. Contributing trajectory points that are closest to either end point are ignored—

spatially, these ignored points are located in the two gray semi-circles in Figure 3.10.

If they were included, the final composition would contain a large “bubble” on each end

that replicates the end point contribution. These two bubbles would overpower the image

without providing additional, relevant information to the viewer.

Once the modified Level Set algorithm determines the parametric and distance values

for each pixel, the contributing trajectories are transformed and composited together for the

final rendering. The final objective for this stage is to accumulate the individual trajectory

contributions for each pixel in the composition; the contributions are captured as a list of

trajectory attribute values for the corresponding trajectories that influence a particular pixel.

The per-pixel list of attribute values is then used to select the pixel’s color and is described

in more detail in the next chapter.

Individual trajectory contributions can be handled in one of three ways: localized,

symmetric, or asymmetric (Figure 3.15). When the accumulation is localized, the indi-

vidual trajectory only contributes to a few pixels at each corresponding parametric (t) and

distance value (d). Recall that the distance value is calculated with respect to the trajectory’s

distance from the average trajectory. The localized application most closely resembles the

contributing trajectories and provides the most granular composition. Both symmetric and

asymmetric extend the contribution from the distance down to the average trajectory, re-

ferred to as the core. The key difference is that the symmetric version accounts for the

signed distance from the average trajectory. Test data examples enumerating each type are

shown in Figures 3.20, 3.21, and 3.22 and will be discussed later.
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FIG. 3.15. Accumulation options. From left to right: localized accumulation, symmetric

core accumulation, and asymmetric core accumulation. Accumulated locations are repre-

sented by the thick green line. The t-value represents the parametric value for the corre-

sponding average trajectory, and the d-value is the contributing trajectory’s distance from

the average trajectory.

FIG. 3.16. Accumulation option examples. From left to right, localized accumulation,

symmetric core accumulation, and asymmetric core accumulation.
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FIG. 3.17. Orthogonal distance. During the composition phase, the contributing

trajectory’s closest distance to the tangent of the corresponding average trajectory point is

used.

3.5 Visualization Composition Process

For each pixel, the contributing trajectories that influence its appearance need to be

determined. To accomplish this, the corresponding spatial location is determined on each

contributing trajectory on a pixel-by-pixel basis—recall that each pixel has a parametric

value associated with it as a result of the Level Set. The parametric value is then used to

interpolate along the contributing trajectory to find its corresponding spatial location. This

spatial location is then compared with the average trajectory to determine the distance and

relative position (above or below the average trajectory) in world space. If the distance is

within a specified delta of the pixel’s distance value (i.e., the Level Sets expansion time),

then this trajectory contributes to the pixel. The delta is derived empirically and ensures

that each trajectory contributes to a perceivable area. To store the actual contribution, the

trajectory’s attribute value is also interpolated at this parametric value and added to this

pixel’s list of attribute values. The implementation must guarantee that a single trajectory

can only contribute to each pixel at most once.

During the development of the composition process, a consistent “valley” in the final



www.manaraa.com

41

rendering along the average trajectory was observed. Examining how the average trajec-

tory was formed revealed that the Euclidean distance measurement was the cause. Since

each average point is centered within the corresponding points on the contributing trajec-

tories, the point-to-point distances are larger than would be expected, causing the “valley.”

However, using the orthogonal distance from each contributing point to the average trajec-

tory’s tangent produces more intuitive results. Because the trajectories are composited in

reference to the average trajectory, the closest orthogonal distance produces a more appeal-

ing transformation—i.e., orthogonal measurements are preferred in the common reference

frame. Figure 3.17 illustrates this calculation. In the figure, the corresponding points

on both the average trajectory and the contributing trajectory are highlighted by the small

squares. The tangent along the average is denoted by a dotted purple line. The tangential

distance used by the composition is the closest point on the tangent, shown as a green line.

3.6 Color Composition

The final phase of the composition process is to assign color values to each pixel in

the final rendering. Several goals need to be satisfied by the chosen scheme. First, the

spatial density of the contributing trajectories needs to be effectively depicted, providing

the viewer with a clear understanding of the cluster’s spatial structure. Second, the tra-

jectory attribute values should be discernible by the viewer in their corresponding spatial

location—by properly showing this value, the attribute trends along the trajectory can be

determined. Finally, if the contributing trajectory attributes have a wide variance, that

should be depicted as well. In general, pixel brightness provides an intuitive representation

for areas of high density, and pixel hue is a common choice for attribute values.

From the structure composition step described in the last section, each pixel has a

list of attribute values from the trajectories that spatially contribute at this location. The



www.manaraa.com

42

FIG. 3.18. Color composition. The attribute lists created earlier in the composition

process can be used to color the image through blending or weaving.

list of values can be used to directly derive parameters for the color model. The length

of the list is directly proportional to the composition density and the mean and standard

deviation can be readily calculated. Figure 3.18 depicts the list of attribute values for

two example pixels and the resulting statistics from these lists. In the figure, the common

reference frame is represented on the bottom as the final rendering surface. The two pixels

are shaded and the list attribute values are shown as a column of values. From each of the

lists, the density, mean, and standard deviation are calculated (as written at the top of each

column). These statistics are used to select an appropriate color, as described in the next

section. Additionally, Figure 5.3 provides a similar example from the second use case.

3.7 Blending Method

Two separate color compositing schemes, blending and weaving, were chosen to ef-

fectively portray the attribute data. The first method uses a color blending approach (Chlan

& Rheingans 2005) to account for the density, mean, and standard deviation, and the other

method weaves colors (Hagh-Shenas et al. 2007) together to show the attribute value from

a randomly selected contributing trajectory. To render the color-blended composition, the

mean, standard deviation, and density value feed into the hue, saturation, and brightness
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(HSB) of the color value, respectively. In order to satisfy the specific principles described

by Rheingans ( 2000), the hue component is constrained to only cover two or three colors

from the entire color spectrum. By modulating the saturation by the standard deviation,

areas where most of the contributing trajectories have similar attribute values deepen as

saturated colors. Areas where the contributing trajectories disagree or have a wide variance

have low saturation and appear washed out (i.e., white or gray). Finally, density corre-

sponds directly with the brightness component, and, against a black background, provides

an opaque representation where the maximum density is reached.

In Figure 3.18, the color blending step is shown on the right side of the figure. The

first example pixel has more trajectories contributing to the composition and therefore has

a brighter color, since the density is higher. The first pixel also has a higher mean value and

a lower variance, resulting in a higher saturation on the upper end of the color scale. On the

other hand, the second example pixel has fewer trajectories (less density) and therefore uses

a darker color scale that, when placed against a black background, provides the intuitive

appearance of less density. The second pixel has a lower mean value and a higher variance,

resulting in a choice from the lower end of the color scale that is significantly more washed

out.

Blending’s primary advantage is that every data point contributes to a pixel and all

three aspects (i.e. attribute value, attribute deviation, and trajectory density) are repre-

sented by the visualization. However, to achieve desirable results, it is often necessary to

manually manipulate the color range for the mean values (hue) and the standard deviation

(saturation). This can be complicated if multiple visualizations need to be compared—

adjusting each visualization separately results in visualizations that cannot be directly com-

pared against one another. Depending on the color scale chosen, it may also be difficult for

the viewer to determine the mean value in low density areas of the image. The difficulty

lies in human perception correctly understanding the hue of the pixel in darker regions.
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3.8 Weaving Method

The weaving method, the second color compositing scheme, also uses the same hue,

saturation, and brightness color model, but does not modulate the saturation by the standard

deviation. Instead, the algorithm randomly chooses a contributing trajectory’s attribute

value to select the appropriate hue component for the woven cell. The density is still used

with the brightness component to correctly convey the density and therefore the cluster’s

overall structure. Weaving provides the viewer with an exact value of a single data point in

that region; deviation must be inferred by looking at neighboring point samples. On the left

side of Figure 3.18, a simple depiction of how the woven color is chosen. First, a random

value is chosen from each pixel list. This value chooses the woven color and the density at

this location determines the brightness.

Weaving’s primary advantage is that every pixel represents an actual data point from

the trajectory set. By picking a random trajectory for each pixel (or local area), actual

data points more accurately depict the underlying trajectories. Standard deviation is more

difficult to determine, especially on a qualitative basis. While visual perception can pick out

areas of high deviation due to the mix of high variances in the woven colors, determining

the qualitative deviation is a challenge.

To illustrate the strengths and weaknesses of each approach, Figure 3.19 depicts each

method applied to the different accumulation models. Blending produces intuitive results

across all three accumulation models (localized, symmetric core, and asymmetric core).

However, due to the subtle variances in the saturation, the attribute trending information

is difficult to determine except at a very granular level especially within both core visual-

izations (middle and bottom left). It should be noted that the asymmetric version (bottom

left) has more saturated colors because less variability occurs on each side of the average.

The blending approach applied locally (top left) produces better results for interpreting
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FIG. 3.19. Blending versus weaving. The tiles show the distinct differences between using

blending (left) versus weaving (right) color models. Vertically, the tiles show localized

(top), symmetric core (middle), and asymmetric core (bottom) comparisons.
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the mean value (i.e. hue). Weaving, on the other hand, produces stronger results in both

core visualizations (middle and bottom right). For example, the middle section in the sym-

metric core (middle right) is especially strong for seeing the constant attribute value. The

localized, weaving results (top right) do not maintain the cohesive nature of the blended

counterpart (top left).

3.9 Test Data

Figures 3.20, 3.21, and 3.22 show sample test data for 10, 100, and 1000 syn-

thetic trajectories, respectively. Except for the top row (which shows the original, non-

composited data), each figure provides examples, from left to right, of symmetric core,

asymmetric core, and localized compositions, respectively. Furthermore, the second and

third row use the closest point calculation for determining trajectory contributions while

the fourth and fifth row use the tangential distance. Lastly, the second and fourth row use a

blended approach while the third and fifth row show the woven techniques.

As one can see, the composition becomes smoother and less disjoint as more trajecto-

ries are added. In fact, the algorithm produces better results with significantly more data,

achieving the stated goal of compositing thousands of similar trajectories at once. How-

ever, since this is a synthetic data set, it should be noted that actual trajectory data would

need to be highly cohesive to achieve similar results.

Although early testing led to the use of the tangent method (fourth and fifth rows) for

accumulating values, the results show that the closest point method (second and third rows)

produces stronger results. For example, in the localized versions (third column), the bifur-

cation of the trajectories is clean while the tangent method produces an overlapping result.

Since the test data was derived by both uniformly offsetting the individual trajectories from

the base curve and uniformly offsetting each point by a smaller amount, the correct result
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should be the bifurcated representation. This bifurcation becomes much more apparent as

the number of accumulated trajectories grow.

One notable difference becomes apparent between the localized (third column) and the

core types (first and second columns). Since a uniform distribution was used to perturb the

synthetic data away from the average trajectory, the two uniform curves become apparent

in the localized version. This is not directly apparent in the core version, although it can be

inferred from the uniform distribution of density (i.e. very little dimming of the color).
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FIG. 3.20. Test data, 10 trajectories
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FIG. 3.21. Test data, 100 trajectories
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FIG. 3.22. Test data, 1000 trajectories
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Chapter 4

APPLICATION: ROBOCUP SOCCER

To demonstrate the effectiveness of the approach, trajectories derived from artificial

intelligence multi-agent systems were examined using both traditional visualization tech-

niques and the novel approach of trajectory clustering and composition. The following case

study provides real-world examples of how trajectory composition can aid in understanding

large trajectory populations. From the analyst’s perspective, several requirements need to

be satisfied by the visualization process. First, the analyst needs to investigate thousands

of trajectories produced from multiple, simulated multi-agent systems. These trajectories

need to be grouped with other, similar trajectories for further analysis. The resultant group-

ings need to be validated by the analyst to ensure that they do indeed belong with each

other. Finally, when analyzing each individual group of trajectories, the analyst needs to

understand how specific, application-dependent attributes vary both along the trajectory

and across the group. The goal for analyzing these attributes is to improve the overall

algorithm behind the multi-agent system.

4.1 RoboCup Soccer Background and Previous Work

RoboCup is a soccer-based framework for research in multiple artificial intelligence

disciplines, including strategy and planning, play mechanics, and collaboration among in-

51
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dependent entities. Teams regularly meet to compete in tournaments and there is a wealth

of research into different methods for solving each aspect of RoboCup soccer. For example,

several papers (Salmani, Fard, & Naghibzadeh 2006)(Zafarani & Yazdchi 2007)(Whiteson

et al. 2005) have proposed methodologies for how each AI player can optimize its behav-

ior to achieve the best results for the team. There are multiple leagues within RoboCup,

exploring multiple AI challenges, from robotics to team-based collaboration. The focus

of the analysis within this paper is the two-dimensional simulation league, which provides

ample data for examining most RoboCup multi-agent problems, except robotics.

Several methods are currently used to analyze the performance of RoboCup teams.

These methods include looking at the overall scores from matches, gathering statistics from

plays or other game mechanics, and simplified simulations such as keep-away. As within

other areas of artificial intelligence, many of the training algorithms used have their own

intrinsic methods for determining a team or player’s performance. These methods are used

for either unstructured or directed learning. Another, more straightforward, method used by

researchers is to just watch the matches as you would a regular soccer match and identify

deficient heuristics or other suboptimal strategies.

Several methodologies have been used to analyze RoboCup soccer matches. Raines

et al. (1999) developed automated techniques to analyze the behavior of the agents inde-

pendent of the particular domain. Data mining and inductive logic are used to determine

success and failure cases on derived state variables directly related to success. Riley and

Veloso (2000) focused on adapting the strategy of multi-agent teams, as well as the indi-

vidual agents, to more effectively overcome an adversary. To accomplish this, behavior is

broken down into distinct classes. Visser el al. (2002) also developed an adaptive strategy

to maximize the success of player passing using decision tree induction. While these tech-

niques have focused on automated ways to analyze performance, the need for information

visualization of RoboCup data to understand and improve team performance has not been
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addressed.

Data visualization is a natural choice for analyzing the data generated from simulated

RoboCup matches. The logs produced by the simulation contain an exact representation

of almost all of the events that occurred within the match. However, several problems are

apparent. The first is that the logs do not contain information about the internal state of the

artificial intelligence algorithm running within each team member. Therefore, it is difficult

to gauge the overall intent of the player. Because the internal agent state is not accessible,

a second problem with the log data is exposed: it only contains very low-level mechanics,

so one must extensively process the logs to generate information about ball possession,

whether the intent behind a kick was to dribble or pass, which team members were seen

by a player, etc. For the visualizations in this chapter, the trajectory followed by the soccer

ball during a team’s possession was extracted from the log data. A possession is defined as

a contiguous set of game states during which one team controls the ball. To provide more

density for the clustering algorithm, the field is normalized with respect to the possessing

team.

4.2 Traditional Visualization Techniques

Traditional visualization techniques are applied to the RoboCup dataset first. These

techniques have general applicability across a wide array of domains and are universally

acknowledged for their intuitive nature, acceptance across users, and ability to provide scal-

able insight into data. By first studying how traditional visualization can provide insight,

the proposed trajectory composition techniques can be compared and contrasted to deter-

mine if value is added. The goal with respect to the traditional techniques is to determine

what additional insights can be derived from spatial trajectory data.
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4.3 Analytical Visualizations

My work uses several familiar, as well as novel, visualizations for analyzing multi-

agent systems. Visualization is a natural choice for analyzing the large amounts of data

that is generated from multi-agent systems. To be effective, the data needs to be portrayed

in an intuitive manner. While this may be straightforward for spatial aspects, creative

ways to depict non-spatial information within their spatial context were developed. This

combination enables multi-agent researchers to fully understand an agent’s behavior and

overall system coordination.

More specifically, visualizations that summarize simulated multi-agent environments

were developed. These summarization views are useful for quickly reviewing large

amounts of data to determine points of interest. These points of interest may represent

either successful behaviors that need to be reinforced or sub-optimal strategies that require

algorithmic improvements. The summarizations capture both spatial and non-spatial as-

pects and allow analysts to drill down into simulation data for further examination. The

summarizations clearly portray relevant parts of the data produced by multi-agent simula-

tions and key attributes for each agent for further analysis.

Tailored versions of parallel coordinates are also provided to analyze specific attributes

for each agent within the multi-agent simulation. This methodology is applied to the strat-

egy behind teams of multi-agents to cover both shared common views and global strategies.

The methods rely on extracting domain-specific attributes that were identified as important

to the success of the multi-agent teams. These attributes are then assembled into multi-

variate constructs for use within a parallel coordinate visualization. Furthermore, enhanced

parallel coordinate views that overlay histograms in addition to the attribute relationships

are also created. To overcome some of the limitations of parallel coordinates for this appli-

cation, a filtering mechanism was added to separate competing multi-agent teams, color to
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separate effective strategies from ineffective ones, and clustering to partition similar sam-

ples.

4.4 Visualization Goals

The research focuses on several key goals for analyzing multi-agent systems. The

first provides effective summarizations of both spatial and non-spatial aspects of simulated

multi-agent systems. A key requirement is to extract relevant spatial aspects related to the

goal for the multi-agent system while providing specific spatial and non-spatial information

that determines each agent’s choices and actions. As a further complication, the analytic

must also capture the agents’ collaborative relationships. To satisfy this requirement, both

types of data are combined: the spatial data provides the overall goal-oriented information

and the non-spatial information is mapped within the spatial context so that the relationship

is clear. The goal is to enable quick review of the simulation to determine interesting events

that can then be further analyzed.

A second goal of the visualizations is to depict domain-specific behavior of individ-

ual agents and the overall multi-agent strategy. Key requirements include representing at-

tributes critical to the success of an agent’s behavior and the interrelationships with other at-

tributes. This methodology is also applied to multiple agents including their collaboration,

shared common view, and overall strategy. This is accomplished by extracting domain-

specific attributes related to the goals and objectives of the multi-agent team and using

a modified parallel coordinates view for comprehension. By providing this visualization,

analysts can understand the complex interactions among key features of the multi-agent

system, enabling performance improvements in their design.
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FIG. 4.1. Match summary visualization. A RoboCup match is succinctly depicted to track

ball possession, ball field position, collaborative play mechanics, and specific player at-

tributes. The displayed attribute, represented as a gray scale value, is the minimum distance

to an adversarial player.

4.5 Match Summarization

Analyzing a complete RoboCup match is a tedious process when viewed as the

straightforward animation produced by the RoboCup simulator. Match summarization is

a natural choice for visualization because the critical match components can be extracted

and depicted within a single view. These critical components include the ball position rela-

tive to the goals, ball possession, coordination among team members to conduct plays, and

specific attributes about each player throughout the match. Most of these are not directly

provided by the RoboCup logs; they have to be determined from the low-level events. To

analyze other multi-agent systems using this type of technique, application-specific com-

ponents related to the goals of the system would need to be derived.

To satisfy these goals, a match trace visualization was constructed that can present
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several RoboCup match elements at once. Figure 4.1 provides an example of this sum-

mary view. The match trace consists of a single pixel row for every time increment within

the game. For RoboCup, this equates to each state within a match. The state is a single

simulation increment where all simulation variables get updated. Each pixel row in the

visualization depicts the ball position, ball possession, and a single attribute for all players

within the match shown as a gray-scale value. To capture the spatial relationship, a simpli-

fied field is represented in the center of the visualizations to show the relative position of

the ball between the goals; one team’s side is tinted green, while the opposing side is red.

The ball position itself is the white pixel on the simplified field in the middle. To provide a

sense of time, these white pixels are connected with lines across each of the match states.

Ball possession is denoted by the red and green bars on each side of the field representation.

By providing this cue, one can quickly determine if the team that has possession is moving

the ball down the field or not. As one can see, the components of this visualization capture

key characteristics of the soccer match and depict critical changes over time to determine

where interesting events occur. For example, suboptimal teams that can never push the

ball past the center line are easy to identify because the center line is never crossed in the

visualization.

To characterize players in the match, a column is devoted to each player showing a

single user-chosen attribute as a gray-scale value. The choice of attributes include dis-

tance to the ball, stamina level, distance to the closest team member, and distance to the

closest adversary. These attributes are clearly relevant to understanding how the match is

progressing, the effectiveness of each side, and, on a larger level, the strategy employed by

each team. Lighter shades represent a closer distance or more stamina, while darker regions

represent a longer distance / less stamina. Long distances are capped at a distance of 10.0

to provide a higher degree of resolution for small values. Stamina basically equates to how

much power a player can expend to move: the more stamina the player has, the faster they
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FIG. 4.2. Summary of complex passing. The team on the right executed a 16-pass play,

resulting in only a small gain of field position. The displayed player attribute is the distance

from the player to the ball.

can dash for the ball.

To provide information about how team members are collaborating, player kicks and

individual ball possession are shown across player columns with a red line. Each player

kick is represented as a tiny “v” or arrow symbol–a series of these symbols indicate drib-

bling activity. Changes of player possession can be determined because the line will tran-

sition from one player column to another player column within the same team. Each pass

begins with a passing kick and ends with a receiving kick to “catch” the ball for further

dribbling, passing, or scoring. This method of capturing player interactions provides a

natural and intuitive reflection on how collaborative the team is and the complexity of its

strategy for coordinating the agents. Figure 4.2 shows a relatively complex play pattern.

As one can see, the team on the right has possession of the ball. Over the course of the play,

six players are involved with multiple dribbles and passes. The ball possession portion in-
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dicates that there was little forward progress until the pass towards the end of the play, at

which point the team lost possession. Within the diagram, the player attribute has been

mapped to the player’s distance from the ball. Potential turnover points can be identified

for each of the defensive players as their attribute intensity approaches white, indicating

that they are almost on top of the ball. In the example discussed previously, two defensive

players have several chances to intercept the ball, as shown by the diagram. This potentially

provides context for why the offensive side continued to pass the ball between players. As

one can see, highly collaborative plays become readily apparent. Scoring drives are easy

to spot, and one can easily understand the events that led up to a goal shot, or, conversely,

that resulted in a loss of possession.

Watching the traditional animated version of this part of the RoboCup match would

require several minutes. However, the summarization can be viewed in less than a minute

to determine points of interest and complex collaborative plays. In addition to decreasing

the amount of time required, the summarization provides key indicators for how the team

coordinates their individual movements. The traditional animation loses this information

because each view of the match only shows a single instance in time–there is no context for

past or future information. Historical information about who had possession of the ball or

which player performed the original pass is lost. However, the summarization visualization

clearly and intuitively depicts this complexity. The summarization view provided here

shows all of the time steps within the game, enabling the viewer to visually see patterns of

performance over time.

4.6 Analyzing Dribbles, Passes, and Plays

To effectively analyze agent mechanics, multi-agent collaboration, and multi-agent

strategies, parallel coordinate views were developed that show derived parameters from
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multi-agent simulations. Parallel coordinates were chosen because there is an expectation

that the relationships between extracted values and task performance would have a strong

correlation. Initial limitations of parallel coordinates led to tailoring the visualization to

distinguish the result of the task performance for each multi-variate group, provide filtering

for competing multi-agent systems, cluster similar multi-variate groups to partition data

sets, and eventually derive a new type of parallel coordinate visualization for understanding

how the different team strategies affect overall team performance.

To apply this methodology to RoboCup, multiple analytic passes for a RoboCup match

were created that would automatically derive player possession, team possession, basic play

mechanics (e.g., dribbles and passes), and composite plays (i.e., combinations of dribbles

and passes while a team maintains possession). From each layer of the analysis, parameters

and attributes based on a player’s observable behavior are derived that could then be used

to determine why one team’s strategy or mechanics were better than another team’s. Figure

4.3 depicts some of the attributes extracted for passes. Ball velocity and kicker velocity

represent the velocity of the ball and the kicker’s velocity, respectively, at the beginning of

the pass. The intercept distance and perpendicular distance are calculated for the nearest

team and adversary players to the pass center line. The intercept distance is the distance

from the initial pass location to the perpendicular intersection on the center line, while the

perpendicular distance calculates the players distance to the center line’s position. The

pass angle and view angle represent the angle between the kicker’s direction and view,

respectively, and the pass direction.

Figures 4.4 and 4.5 show the attributes extracted from players performing passing

and dribbling, respectively, within the RoboCup tournament. In addition to the standard

parallel coordinates view, the percentage of soccer passes and dribble mechanics that go

through each vertical attribute axis were also displayed. The percentage is represented

as a text value denoting percent and a gray scale value with white equivalent to 100%.
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FIG. 4.3. Extracted attributes for RoboCup passes.
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FIG. 4.4. Pass attributes for #1 ranked team. Twelve different attributes for all passes

performed by the winning team throughout the tournament are displayed as a parallel co-

ordinate view.

Without these additions, it is difficult to assess how many parallel coordinate lines traverse

the attribute value. The range for each variable is placed on the top and bottom of the

parallel coordinate axis to further gauge the actual value. However, because of the number

of parallel coordinate lines, it is difficult to determine which attributes indicate success

or whether the extracted attributes are even relevant. These limitations led to tailoring

and modifying the parallel coordinate visualization to answer fundamental questions about

multi-agent performance.

First, the overall distribution for each extracted attribute needs to be understood. To

accomplish this, histogram information is overlaid to displayed multi-variate values next to

the parallel coordinate axis for that attribute. Each histogram provided a quick reference

for the overall trend within that attribute (e.g., whether the attribute had a normal distri-

bution, uniform distribution, or bathtub-like curve) via a standard two-dimensional graph.

The second limitation was the need to disambiguate successful plays from ones that were

either ineffective against, or intercepted by, the opposing team. This limitation also applied

to separating one RoboCup team from another. While applying color for different play
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FIG. 4.5. Optimized parallel coordinates for successful dribbles for top three teams. The

results from before (top) and after (bottom) the optimization algorithm are shown.
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results helped with the understanding the success of the play, coloring each attribute line

by its corresponding team was infeasible. The number of teams would quickly overload

the number of distinguishable colors, due to the magnitude of parallel coordinate lines dis-

played and would obscure the result of the play. Interactive filtering was also provided so

that a user could select which RoboCup team’s attributes were displayed. This interactive

capability allowed teams to be analyzed on an individual basis or across all of matches.

Figures 4.6, 4.7, and 4.8 use parallel coordinates to compare passing characteristics

of the teams in the tournament. In each figure, the number one ranked team is shown on the

top, while the lowest ranked one is on the bottom. The first figure, Figure 4.6, includes the

successful, failed, and intercepted passes colored in green, orange, and red, respectively.

Intercepted passes resulted in the opposing team gaining possession while failed passes

accounted for neither team obtaining the ball (e.g., ball going out of bounds). A quick

glance at the distribution of these values (far right column) shows that 81% of the best

team’s passes completed successfully, compared to only 47% of the worst team’s. Both

teams had a preference for a low kicker velocity but the best team’s distribution was larger

as shown by both the histogram on the first column (far left) and the percentile markers. The

worst team had a preference for ninety-degree kicks, as both the pass angle and view angle

show in the bottom portion of Figure 4.6—these were largely successful, as shown by the

green coloring. However, while the best team preferred zero-angle kicks, the distribution

was more uniform indicating better adaptability to situations in the tournament.

By filtering out all but the successful passes, a better understanding of team prefer-

ences in passing becomes clear (Figure 4.7). In particular, the worst team’s deficiencies in

passing are clearly evident in the bottom of the diagram. Both the pass angle and view an-

gle (noted in the last paragraph) had tendencies for ninety-degree passes. Furthermore, the

worst team also had a preference to pass the ball when the adversary perpendicular distance

was approximately 12, as shown by the spike in the second to the right-most column in the
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FIG. 4.6. Parallel coordinate view of best and worst team pass characteristics.
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FIG. 4.7. Successful pass characteristics for best and worst team.
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FIG. 4.8. Intercepted pass characteristics for best and worst team.
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bottom of the figure. This may indicate a hard-coded value or a point where the heuristic

A.I. algorithm needs to be examined in more detail. When these attributes are compared to

the best team (top of figure), the superior game mechanics become obvious. For instance,

the best team member’s interception distance had a better distribution (i.e., longer passes)

and the perpendicular distance was a little more drawn out indicating successful recovery

of the ball even when not directly on the pass center line.

In the last figure, Figure 4.8, the lowest ranked team shows higher interception rates

when the ball velocity was low (close or equal to zero) and the teammate’s distance and

adversary distance were very close to the pass center line. These attributes indicate that the

team’s heuristics allowed adversaries to close in on players and steal the ball and that the

team’s members were often bunched up. A more successful approach is to use successful

passes to keep the adversary away from the player who has possession. This also requires

that the teammates maintain distance between each other to keep the adversary on the

defense. The highest-ranked team also exhibited this characteristic to some degree, with

the exception that, unless the adversary was on top of the kicker, then the probability of an

interception was significantly lower.

In terms of improving a team’s performance, the worst ranked team needs to focus

on improving the basic play mechanics for soccer. Higher-level strategies and goals are

impossible to implement effectively without a solid game play implementation. In particu-

lar, the limitations on kicker velocity and the low ball velocity should both be examined in

more detail. Adjusting the team’s adaptability for these attributes would increase situations

where passes can be successful, and, in turn, enable the team to more effectively move the

ball down the field and to increase collaborative strategies among players. This is also true

for the ninety-degree preference in passing. While these passes are successful, a team can-

not be limited to one type of play especially when situations demand a multitude of options

for success.
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The suboptimal ordering of the parallel coordinate axes was another limitation that

needed to be addressed. Ma and Hellerstein (1999) also addressed this limitation for par-

allel coordinates. When the axes are not optimized, a viewer cannot clearly distinguish

which lines form trends. For example, the average closest adversary and closest adversary

are difficult to correlate in the top of Figure 4.5 because they are separated by a single

axis. However, when aligned together (as shown in the bottom of the figure), the correla-

tion becomes more obvious—i.e., the two values are approximately the same across all of

the samples. To optimize the ordering, a greedy strategy is implemented to place closely

related axes together. First, the sum of the differences between every possible pair of coor-

dinate axes is calculated for the displayed multi-variate samples. The higher the sum, the

more likely that displayed lines would criss-cross the display, potentially obscuring simi-

larly related values. Next, the axes are ordered to minimize the sums of these differences.

Figure 4.5 depicts the before and after results for the filtered version of successful dribbles.

While this provides an optimum solution based on attributes that have roughly equivalent

values, another option would be to optimize based on principal component analysis or to

minimize the number of edge crossings across the parallel coordinates display. Principal

component analysis is an automated technique to determine which variables are related or

dependent on one another. By applying this principle, portions of the parallel coordinate

view that are confusing, unclear or that have too many crisscrossing lines would better

lend themselves to analysis because related variables could be placed next to one another.

Also, in place of the greedy strategy used, a dynamic programming approach would work

exceedingly well at the expense of more computational time.

While these modifications provided additional analytical insights, it was still difficult

to distinguish why one team performed better than another. Some of the suboptimal me-

chanics did stand out in the analysis, but identifying the overall deficiency was difficult.

Additional fidelity was needed to separate each team so that they were visible at the same
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FIG. 4.9. Clustered samples within parallel coordinates visualization. To enable a better

understanding of how the dribble attributes are partitioned, the parallel coordinates imple-

mentation automatically clusters them and shows each grouping interactively.
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time. A complementary approach was chosen that mixed attribute clustering (Johansson et

al. 2005) and attribute percentages among teams. The clustering approach was straightfor-

ward and based on the sum of the root mean square difference between normalized multi-

variate values. A resulting cluster was a group of attributes whose values were closely

related and most likely to be represented similarly on the parallel coordinate display. To

capture how each team related to the currently displayed attributes, a bar-graph based visu-

alization below the parallel coordinates that shows the total number of attributes per team

(broken down into the three color groups based on the success of the pass, dribble, or play,

as described previously) was provided. To indicate which attributes are actually shown, a

brighter color is dynamically calculated and displayed as the overall totals bar is dimmed.

As with the interactive filter, going through the clusters provided a quick method for scan-

ning for team-biased mechanics, successful mechanics, and failed implementations. Figure

4.9 shows an example of a dribble attribute cluster that was relatively successful across all

of the teams, but especially for the third-ranked team. The highlighted bar charts denot-

ing the number of team dribbles are in the lower half of the figure. For this cluster, the

dribble distance was relatively low while the closest adversary distance was far from the

ball. These types of dribbles were most likely to connect passes that kept the adversary off

balance.

The advantage of this approach is to use machine automation to overcome visualiza-

tion limitations. In this case, visualization limitations preclude a user from being able to

extract the relevant features because there are too many lines that obscure potential pat-

terns of interest. However, by applying machine automation to automatically group related

attributes together combined with an interface that enables each grouping to be examined

individually, a more tractable method to analyze the data is provided.
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4.7 Traditional Visualization Results

The following paragraphs show how my methods enable a deeper understanding of

success and strategy within the RoboCup tournament. Results from the three sections are

given below (dribble analysis provided very few conclusions about team performance and

has subsequently been omitted).

Match Summarization Results Match summarization provided a key method

for quickly determining how a particular team played. From the visualization, the viewer

can quickly determine the average complexity of collaborative plays, whether the game was

one-sided or not, and how attributes such as stamina and distance to other players affected

a player’s decision making.

From the match summarization view, the overall flow of the match and specific plays

that were of interest to the analysis were quickly apparent. More specifically, many of the

lower-ranked teams had suboptimal implementations. This was apparent from the ball re-

maining on one side of the field throughout the match or the overall time of ball possession.

Other indications of suboptimal performance became apparent when looking at the stamina

attribute for each player. Teams with an effective strategy used stamina to accomplish spe-

cific plays whereas suboptimal teams tended to have a greedy strategy which burned all

team member’s stamina at once.

Figure 4.10 provides an example of this suboptimal strategy. The team on the right

uses almost every player’s stamina when they’re on defense (stamina is recorded in the

RoboCup tournament logs). This is shown by the white line that fades into gray as the

stamina is consumed. However, the team on the left continues to score with a more efficient

use of individual players’ stamina. Also, the team on the right continues to keep the ball on

the opposing team’s side with only a few players. The top and bottom plays indicate that
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FIG. 4.10. Greedy stamina use. The team on the right side shows a stamina consumption

pattern for almost all team members.
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four players are used in the player’s offense.

In addition to suboptimal strategies, other interesting patterns become apparent from

the summarization view. Figure 4.11 depicts a team successfully maintaining control of

the ball while trying to penetrate the opposing team’s defenses. As one can see, the de-

fenders are successfully blocking the team’s attempts repeatedly. This is shown by the ball

remaining in roughly the same position of the field. The offense is only using two players

(i.e., only two players are active on the left-hand side of the diagram), and, while the overall

drive lasts for many time increments, there are multiple out-of-bounds or penalties, break-

ing the drive into discrete parts (i.e., straight vertical ball lines that are not in the possession

of either team). The success of the defense can be inferred by the defensive players (right-

hand side) coming close to the ball (i.e., light gray and white bars), forcing the offensive to

pass the ball, as shown by the passing lines and ball movement information.

When roughly equivalent teams are compared, the summarization agrees with the

viewer’s intuition. Figure 4.12 represents a match between the second- and third-ranked

team in the competition. As expected, suboptimal strategies are avoided and, in general,

each team has a combination of successes and failures over the course of the match. In ad-

dition to these quick turn-arounds between similar teams, long stints between scores were

also observed when teams were similarly ranked. While the data to understand a team’s

learning capabilities was not available, a few of the teams did score more towards the end

of the match potentially indicating adaptation throughout the match. The inverse was also

true—some defenses appeared weak at the beginning of the game but improved as the team

learned how to counter the opposing team.

While summarization provided a quick overview and enabled drill down to simulation

events, it couldn’t be used to analyze specific attributes of a team’s performance. To look

more at these values, a tailored parallel coordinate visualization was used to produce the

following results.
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FIG. 4.11. Team attempting to penetrate defense.
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FIG. 4.12. Equivalent teams trading offensive drives.
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Pass Clustering Results Passes were easier to analyze by examining the his-

tograms than the relationships between each attribute. For example, there was a strong

predisposition for lower-ranked teams to pass when the adversary perpendicular distance

was at a distance of 9.4 units; this spike is visible across the sums of all pass attributes for

the entire tournament. A spike also occurs within the dribble parameter for adversary clos-

est distance at the same value so there may be a bias towards passing at that distance. There

is a slight tendency across all of the teams to use the highest possible velocity for a pass,

but the distribution itself is mostly uniform. Kicker velocity at the time of the pass kick

is sharply at zero with an exponential fall-off. Teams preferred a straight pass, but some

teams had a slight peak at the 90 degree mark. Within the RoboCup simulator, straight

kicks (in the same direction as the player is facing) have no reduction in force, while off

angle kicks receive less and less power. This explains why most teams favor the straight

passes. Passes perpendicular to the player’s direction (at 90 degrees) are probably lateral

passes to other team members. Pass distance was in general quite short, but had a small

normal distribution later.

There were loosely correlated pass attributes once clustering was performed that be-

came apparent within the parallel coordinate display. However, the correlations for suc-

cessful passes were relatively weak, indicating that the internal decision making and play

mechanics must be relatively complex. In one clustered view of pass attributes (Figure

4.13), the top three teams had a relatively strong showing with a normal pass angle cen-

tered around 90 degrees (column sixth from the left). This was accompanied by a relatively

small adversary interception distance (column one) and mostly centered on the kicker’s

viewing angle (column five), which most likely indicated lateral kicks from the player’s

motion. Other teams had the same attribute clusters but at roughly a third or less of the

volume across the tournament (green bars at bottom of figure). Based on the increased use

of these particular parameters by the top three teams, several conclusions can be inferred.
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FIG. 4.13. Top three team successful passing strategy. This particular cluster of passes was

favored by the top three ranked teams and represents lateral passes due to the angle from

the player’s direction.
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FIG. 4.14. Ninety-degree pass preferences.

First, these particular passing mechanics were mastered by the top teams. Second, the

defensive strategy to prevent these passes was not implemented by the teams in the tour-

nament. However, without additional details (either extracted parameters or internal team

states), coming to a complete conclusion is difficult. The visualization techniques provide

a method to go through the data and identify interesting trends—coming to conclusions for

the particular anomaly requires additional analysis.

Other interesting trends become apparent when similar mechanics were found. For

instance, the teams depicted in Figure 4.14 all showed a preference for ninety-degree

angle kicks (first column in each of the tiled images in the figure). The teams ranked

eighth, tenth, eleventh, twelfth, and fifteenth all had a spike at the ninety-degree angle from

the kickers current direction. As all of these teams are in the bottom of the league, this

passing preference indicates a weakness in the team’s mechanics. For most of the higher

ranked teams, the distribution was uniformly distributed after the initial normal distribution

around zero degrees (recall that zero degree kicks have more power under RoboCup rules).

It is distinctly possible that the lower ranked teams hard coded some of the behavioral

mechanics into their artificially intelligence implementation—in this case, ninety-degree

passes may appear to be more viable for lateral passes between team members moving
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FIG. 4.15. Team #2 and #6 play mechanics. Note the higher percentage of this cluster’s

play mechanics for the second and sixth ranked teams.

in parallel to one another. However, as discussed earlier, flexibility across all of the pass

angles open additional possibilities enabling more successful strategies.

Figure 4.15 shows that Teams #2 and #6 had an increased percentage of successful

kicks with a relatively high pass velocity. As with other attributes, all of the teams shared

this cluster except some of the lower-ranked teams; however, this wasn’t necessarily con-

sistent. The number of team members open for this cluster was also distinct in that it had

a normal distribution. The open team member calculation is a gradient function measuring

a player’s openness to receiving a pass based on whether they were blocked by an adver-

sary opponent and pro-rated by the distance from the kicker. The typical distribution for

this attribute was very distinct (usually discrete bins at the 0, 1, and 2 player increments),

indicating that these particular plays had a more complex field position than usual. Addi-
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FIG. 4.16. Overall characteristics of successful plays.

tionally, these two teams may share a similar algorithmic implementation approach.

Play Clustering Results Analyzing plays proved to be a challenge due to the

relatively small number of successful plays within the tournament data set. However, some

general conclusions about successful plays can be made from the parallel coordinate view,

as shown in Figure 4.16. The total game states (column one), number of dribbles (col-

umn seven), number of passes (column eight), average ball velocity (column 13), players

involved (column 12), and average adversary distance to ball (column 10) had normal dis-

tributions. Average team distance to the ball was much sharper, with a peak at 2.65 units.

Players involved peaked at three and four players, which corresponded well with the three

passes as a peak. Total rushing distance had an initial spike at 17 units and another surge

between 52 and 60 units. However, when comparing these relationships with failed plays

(Figure 4.17), the trends are very similar. Many of the distributions were roughly the same

but shifted. Players involved, number of kicks, and number of passes were in this category.

Lateral movement had a large difference between successful and unsuccessful plays; un-

successful plays had a sharp spike at zero for lateral movements while successful plays had
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FIG. 4.17. Overall characteristics of failed plays.

a normal distribution. This indicates that straight approaches to the goal were unlikely to

succeed; scoring approaches used lateral movements to bypass the opponent’s defense. Cu-

riously enough, average adversary distance to ball seemed to have little difference between

successful and unsuccessful plays.

Clustering of the parallel coordinate attributes provided unique insight into differences

between teams. Several clusters favored one or two particular teams, while other clusters

coincided with the final rankings of the tournament. However, this wasn’t always con-

sistent, most likely indicating that different strategies or play styles weren’t necessarily

deficient, just different. For example, the higher ranked teams used more players, kicks,

game time steps, etc. for plays, as would be expected. One unexpected anomaly occurred

with the second-ranked team: they had a spike within a cluster that used fewer players

during the play than the overall successful plays. Figure 4.18 shows this anomaly (red

lines) along with a comparison of all of the successful plays (right-hand side of figure,

green lines). Note the differences in the players-involved attribute among the spikes in the

histogram and the larger bar at the bottom of the figure for Team #2. Team #1 had a spike

within a cluster where backward rushing was significantly higher. This may indicate that
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FIG. 4.18. Play cluster with fewer players involved. For reference, all of the successful

plays are shown as a blow-out on the right-hand side of the figure. Note the increased

percentage of these plays with the #2 ranked team (bottom of figure, left-hand side).
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FIG. 4.19. RoboCup example #1. From left to right, the trajectory attributes rendered

are minimum distance to offensive player (blend), average distance to defensive players

(weave), and ball velocity (weave).

greedy or hill climbing strategies were not employed and that a different optimization was

done.

4.8 Play Visualizations

While traditional visualization techniques derived new discoveries about the RoboCup

dataset, combining the spatial ball trajectories with the application attributes can provide

additional, and more intuitive, insight. Due to the number of trajectories in the tournament,

automated clustering techniques are needed to group the data and prioritize analysis for

the most common trajectories. In addition to prioritizing the dataset, the approach benefits

when similar trajectories are visualized in composite.

The first RoboCup example in Figure 4.19 is the composition of 228 clustered tra-

jectories showing an offensive drive around the lower half of the field. The three tiles

represent, from left to right, the minimum distance to an offensive player, the average dis-

tance to the defensive players, and the ball velocity. For two of these renderings, three

distinct colors were used (green, yellow, and red); the velocity image uses just two colors

(yellow and red). The bright spot towards the center of the field shows the typical starting
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point for most games (i.e., higher density trajectory data). The minimum distance to an

offensive player (left-most tile) uses the blending color scheme. Note that for almost all

of the play, the distance was relatively low across all of the trajectories. This is expected

since the offensive player is continuously kicking and controlling the ball on its way to the

goal. The only place this varies is towards the end of the trajectory, when the ball is kicked

toward the goal. In this spatial location, the rendering shows discoloration towards both

white (indicating variance) and yellow (showing increased distance).

The middle tile for the first example represents average distance to the defensive play-

ers. Towards the lower portion of the curve and the goal shot area, the colors transition

to yellow, indicating less defensive coverage. This type of play is commonly chosen to

circumvent the defenders in order to line up a goal shot, as shown. Recall that weaving

the colors together shows actual sampled data values—interpreting the variance is up to

the viewer. The right-most tile represents the ball velocity and is also color woven. Both

the beginning and the goal shot area have higher overall velocities. This is expected of the

goal shot, and, for the beginning of the trajectory, indicates a faster move as the offense

pushes the ball into the other team’s side of the field. The lower portion of the curve has a

lower velocity, most likely indicating deliberation as the offense prepares to push towards

the goal.

From the overall brightness of the composition, one can quickly determine the overall

spatial structure of the cluster. In this case, the distance of the clustered trajectory from the

average trajectory is relatively uniform. The cluster itself is also reasonably compact—i.e.,

the rendered trajectories do indeed belong in the same grouping. The beginning shows a

slightly wider distribution, due to the variance in the starting position. The end, of course,

is narrower because the goal area is smaller. The overall variance in the trajectory attribute

values is also easy to gauge—in the blending example, the viewer can quickly pick out

washed-out areas. In the woven examples, the differences between the adjacent tiles are
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easily determined.

To compare the final composition with the straightforward, or raw data, approach

described in the introduction, Figure 4.20 represents the same data (i.e., a specific cluster’s

ball velocity) as the right-most tile in Figure 4.19. The most striking difference is the

starting ball location—a bright spot in the composition but relatively muted in the raw data.

Similarly, the overall density, or cluster structure, is also difficult to gauge in the raw data

approach—the viewer is not able to successfully assimilate the differences in the density

since the high-frequency data (i.e., all the distinct lines) distracts the eye. The overall trends

in the attribute value also tend to get lost in the raw data approach. While the viewer may

gauge that the lower right side has a lower velocity (i.e., more yellow) in the raw data, the

random, stray lines tend to overemphasize the attribute value around the edges of the “hair

ball.” However, the straightforward approach does provide a better representation for the

final goal shots—this limitation in the approach will be discussed at the end of this section.

The second RoboCup example, Figure 4.21, highlights the composition’s ability to

show the structure of the cluster. In the rendering, the end of the trajectory has a distinct

split. This split occurs as the offensive player shoots towards one of the corners of the goal,

since the goalie is usually situated dead center to cover as much of the goal as possible. In

addition to the cluster’s structure, the visualization provides insight into the ball velocity

attribute. At a glance, one can quickly determine variances in the ball velocity across the

trajectories for most of the play (i.e., the somewhat washed-out appearance). Upon closer

inspection, the initial velocity is relatively low and consistent (bright yellow) in the spatial

area near the center of the field. As with the previous example, the final shot towards

the goal has a higher velocity, at least in the lower shot direction. The variance in the

upper shot direction would warrant more analysis to determine other contributing factors.

Since this rendering only has 84 trajectories, the composition is somewhat coarse. Greater

numbers of trajectories produce smoother images, since individual trajectory contributions
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FIG. 4.20. Spaghetti plot. Multiple trajectories can be overlaid on top of a contextual

background, but the image is difficult to analyze and understand.
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FIG. 4.21. RoboCup example #2 showing overall structure in cluster for the ball velocity

(blend).
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FIG. 4.22. RoboCup example #3 showing the difference between color weaving and

blending for average distance to the offensive team members.

are diminished.

The final RoboCup example, Figure 4.22, shows the difference between using color

weaving and color blending. Both tiles show the same attribute: average distance to the

offensive players. The overall trend, as the ball moves from the offense side to the defense,

is further and further away (i.e., green to yellow to red) from the offensive players. Most

of the players on the offensive team remain in the back field in case the ball changes pos-

session. The color weaving approach provides a stronger indication of variance, especially

when the overall effect is in a large area, such as in the end of the trajectory. The color

blending method forces the viewer to interpret the variance by identifying areas where the

random sampling shows a variety of colors. However, the weaving model portrays exact

attribute values from the data.

In general, weaving is more appropriate when the viewer needs to understand the

exact data values of the underlying trajectory population. It is also more effective when

there are fewer trajectories because sampling will not excessively over-represent the data.

Weaving is somewhat easier to interpret because it does not require the viewer to discern
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FIG. 4.23. Composition variations. The left tile expands the spectrum range to provide

more fidelity. The right tile overlays the original trajectory end points to show their true

locations.

the washed-out appearance produced by color blending. Weaving may also be used with a

wider variety of color scales, since it is not constrained to just the hue component. However,

larger groups of trajectories, which produce better statistical properties, benefit more from

the blending approach, especially when paired with a larger color scale, as described at the

end of this section. The blending approach can also use a higher resolution display, since

the weaving is dependent on discernible tiles.

Several limitations are exposed by the final composition renderings. The first is that,

since the average trajectory is used for the composition, the actual trajectory end points are

obscured. For example, in the original data, many of the contributing trajectories extended

all the way to the goal area in Figures 4.19, 4.21, and 4.22. However, the composition

shows them as ending sooner. Similarly, the actual starting position in soccer, located in the

dead center of the field, is misaligned by the transformation process: instead of appearing

in the correct location, the point is slightly to the left in Figure 4.19. Two aids can be
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FIG. 4.24. End point histogram. A histogram based on the trajectory end points provides

detailed information on the original starting and ending locations.

added to the visualization to show the actual data. The first is to overlay the actual end

points on the composition, as shown in the right side of Figure 4.23. In the drawing, the

trajectory start positions are shown as circles, and the ends are represented as rectangles.

In order to show point concentration, the shapes are overlaid with a slightly transparent

setting. The second aid is to add a histogram at each end of the trajectory composition, as

shown in Figure 4.24. This histogram is created by accumulating the contributions of each

end point. To form the histogram, each end point is projected onto the perpendicular line

at the end of the average trajectory. The line is then “pulled” toward the end point at that

location by using a self organizing map (Kohonen 1997). The necessity of adding the end

point visualization is application-dependent—while it is relevant for the RoboCup data, it

may not be required in other problem domains.

Another limitation, related exclusively to the color blending approach, is that it is dif-

ficult to use the complete dynamic range for the chosen color space. This is the result of

single trajectories having the highest and lowest attribute values but almost no representa-
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tion, since they occur in low-density regions. The highest and lowest colors do occur, but

are almost completely faded out. One potential solution is to expand the color spectrum

used for the visualization, as shown in the left side of Figure 4.23. Figure 4.23 is the

same as Figure 4.19’s left-most tile (i.e., the minimum distance to an offensive player).

As one can see, the variations in the player distance are much clearer. While the complete

spectrum is not as intuitive as the limited one chosen in the design, it does provide a higher

dynamic range. Another potential solution is to remove the density contribution from the

HSB mixing function and provide a separate, independent density view.



www.manaraa.com

93

Chapter 5

APPLICATION: STUDENT COURSE HISTORY

When analyzed in aggregate, student course history data provides a deep understand-

ing of the many factors influencing an individual student’s performance. In addition to

identifying student-dependent variables, the analysis can aid in recognizing deficits in ex-

isting academic programs and potential methods for improving the curriculum. In both

cases, examining individual student information in isolation would not yield equivalent

results—only when the data is analyzed in aggregate do general trends become apparent.

At the individual student level, analyzing trends in past student performance can aid

in predicting future performance. For example, analyzing and correlating a student’s high

school GPA and SAT score with the course plan that they pursue can determine which

factors play the most significant role. Alternatively, characterizing unsuccessful student

strategies can identify existing students on the same downward trajectory. These students

can then be counseled towards more productive strategies, resulting in a successful outcome

for both the student and the academic institution.

Whereas improving the individual student’s academic career is a local optimization,

the conclusions from analyzing student data can also help to refine and shape the cur-

riculum, leading to global optimizations, the focus of this application. A curriculum is

composed of a recommended course plan including prerequisites and a course-to-topic
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coverage model that ensures graduates are well rounded. By determining dependencies

among mandatory prerequisites and recommended, or even potentially unrelated, course-

work, academic program developers can improve the existing curriculum. Improvements

may include requiring new prerequisites, modifying the topic coverage for specific courses,

or determining threshold grades for students to progress to more advanced courses. By en-

acting global optimizations, an academic institute can increase retention and graduation

rates, leading to a more successful program for both students and the institution. Course

history data can also help determine new policies and procedures. For example, the effect

that course load has on student performance could be used to determine new restrictions on

the maximum number of courses that a student could take per semester.

From a technical perspective, this application domain was chosen due to the complex-

ity for analysis and its applicability to the approach. While generic visualization solutions

exist for many similar types of time-series data types, most notably xy-scatter plots and

trend lines for scalar values over time, solutions for set-based elements are rare and have

not been adequately addressed. Student course history falls into this category and is diffi-

cult to analyze in aggregate. However, when the approach is applied, analytical results can

yield significant insights into student performance and the overall curriculum.

5.1 Application

To formalize the application notation, the following definitions are used for the stu-

dent course history domain. For discrete time durations, referred to as semesters, a stu-

dent attends multiple courses. Over the course of a student’s academic career, multiple

semesters are completed with increased expectations as the student progresses towards a

degree. Courses have intrinsic characteristics, such as academic discipline (e.g., history or

mathematics), prerequisites, and a level designation denoted by a course number. When as-
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sociated with a student, extrinsic attributes become associated with a course—final grade,

semester taken, instructor, etc. Similarly, students have intrinsic associations, referred to

as demographic data, and attributes that change over time, most notably accumulated GPA.

This model can be generalized for other applications. For example, dietary history for a

weight loss program or daily personal spending binned by category could both be modeled

similarly.

Analyzing this type of data is challenging due to the concurrent nature of course work

in the student history. For a slice in time, a student attends multiple courses, breaking the

basic definition for a function (i.e., a single time value maps to multiple values) and elim-

inating most existing temporal visualization approaches. The problem is further compli-

cated by both the intrinsic and extrinsic characteristics of the courses and students. How-

ever, if the temporal and concurrent aspects could be accurately represented, analytical

conclusions derived from the aggregate student trends could then be leveraged to improve

academic programs.

The approach leverages the previously described composition techniques to depict

trends in student course history data. First, students are grouped by the grades that they re-

ceive for specific courses—most notably, the gateway and mathematics courses. Gateway

courses expose starting students to the core concepts of the major and determine a stu-

dent’s aptitude for the coursework. After the groupings are created, the visual composition

techniques are applied to identify overall performance, trends across time, and aggregate

semester grades through a small multiples (Tufte 1990) approach. In addition to examining

course-grade dependencies, students are also grouped by demographic categories to iden-

tify related correlations and develop a clustering metric to organize the students based on

their academic career similarities. The results successfully visualize expected trends and

discover unexpected relationships in student performance.

In summary, the approach needs to reveal aggregate student-level performance and
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curriculum-driven features. Such a technique would then address the following questions:

• Which courses are most critical for later success?

• Are there places in the curriculum where students struggle to progress smoothly?

• Do particular demographic groups face distinct challenges at particular points in the

curriculum?

• Which demographic features play the most prominent role in student success?

5.2 Related Work

The most similar projects to this research are visualizations applied to similar data

sets (e.g., student course histories). Traditional techniques were the most prevalent, and the

analytical goals (i.e., improving student performance) directly aligned with the goals and

objectives. Wortman et al. ( 2007) developed an application to interactively explore the

first three courses in computer science using traditional visualization techniques. Edwards

et al. ( 2006) provided students with feedback based on data collected from electronic

submission systems. The data was visualized with traditional visualization techniques and

gave students feedback into their progress relative to their classmates. CourseViz (Mazza

& Dimitrova 2004) visualized web-based data to identify trends in behavior and identify

remote students in need. DynMap (Rueda et al. 2005) visualized the evolution of com-

puter security students through particular subjects using concept maps. Two studies were

performed to confirm that the characteristics were appropriate and understandable and that

DynMap visualization system was usable for analyzing student data.

While all of these efforts gave additional insight into student performance, most of

them relied on traditional visualization techniques that only focused on a narrow window

in time. A new approach is needed that examines students throughout their entire academic
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FIG. 5.1. Two-dimensional representation for student course history. The x-axis corre-

sponds to the semester index while the y-axis represents the mean of the course numbers

for a semester.

program. By exposing long-term temporal trends, subtle variations and patterns become

more apparent. Furthermore, new visualization techniques are necessary, because, while

traditional techniques help to understand summarized aspects of the underlying data, new

approaches can expose time-based dependencies.

5.3 Approach

Student history analysis is used to determine which individual performance factors

or demographics significantly influence a student’s overall performance. By aggregating

students according to their performance in specific courses, a controlled scientific experi-
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ment is approximated. Specifically, students receiving a specific grade in a specific course

become an experimental group while the rest of the student population serves as a control

group. By further refining the groups to cover all possible grades for all possible courses,

critical points in a student’s career become evident. Furthermore, the relative performance

of that student in that particular course reveals the overall importance of the concepts in

the course as they relate to a student’s overall performance. Visualization techniques are

used to graphically depict the student’s academic history, as well as to show variability in

semester GPAs and course advancement. An alternative approach would be to use statis-

tical methods to score overall student performance after the initial course-grade groupings

were created. While the statistical method would lead to a faster determination for the

most critical course-grade pairs, the composite visualization identifies fine-grained varia-

tions in semester grades and deviations among the student groupings across time. These

discoveries could then be leveraged to create statistical processes and automated analytics

to understand each aspect in detail.

5.3.1 Student Trajectory Representation

To successfully use the composition process, each student’s course history is repre-

sented as a two-dimensional trajectory. Trajectory representations are complicated by the

fact that a single semester contains multiple courses. Discrete values for each semester are,

therefore, difficult to create. If each course is individually examined, comparisons among

different students who may only partially overlap in a semester are difficult to make—for

instance, what ordering would be used when only some courses overlap? To solve this

problem, the overall average of the course numbers is used to represent the y-axis value for

a semester. For the provided application dataset, most students incrementally take higher

numbered courses over their academic career, especially within their declared major. To

maintain the representation’s temporal characteristics, the x-axis is used to represent the
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student’s semester index. Figure 5.1 provides a graphical depiction of the spatial trajectory

for a simplified student course history. In the figure, the student’s trajectory slopes upward

from left-to-right as higher-level courses are taken. Since the average of the course num-

bers is used, the resulting y-values for the depicted semesters would be 203, 255.5, and

400.5, respectively.

The most critical assumption for the spatial representation is that increasing course

numbers correlate strongly with student progression and advancement. This assumption

holds true for this dataset—a careful examination of the recommended curriculum shows

that the course numbers increase monotonically across a student’s career. However, for

universities where this is not the case, a different metric would need to be developed cor-

responding to knowledge increments. For example, the aggregate number of prerequisites

could be used to score each course with a numerical value. Alternatively, the core concepts

for the major could be mapped to each course in the curriculum resulting in a fine grained

metric. In our results, the areas of higher divergence tended to occur at the end of student

careers due, in part, to specialization at the 400-level series. However, for the introductory

math, science, and gateway courses through the mid-level courses, the data correlated well

across the groupings.

Courses not directly related to a student’s major were removed from the analysis. For

example, courses in English, social studies, history, or economics had little to do with a

student’s progression in their science or engineering degree. Furthermore, these classes did

not monotonically increase in number and were often taken at various points in a student’s

career. In order to keep the spatial representation clear, only courses directly related to

the curriculum—i.e., computer science, computer engineering, mathematics, and physical

sciences—were used.
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FIG. 5.2. Two-dimensional representation of historical student course data. Color

corresponds to semester GPA.
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5.3.2 Structural Composition Process

Unfortunately, attempting to visualize the trends and characteristics of many students

at once is difficult even when using a simple representation, as described in the last sec-

tion. Figure 5.2 represents all of the computer science students in the sample and is sim-

ilar to Figure 4.20 in the first application. The figure uses the previously described two-

dimensional representation and is rendered by coloring each line segment with the semester

GPA. In the non-composited figure, it is possible to tell that students with flat trajectories

tended to have lower grades—i.e., students who remained in low-numbered courses had

red and yellow trajectories. However, meaningful comparisons are difficult at best.

Unless otherwise noted, a green-yellow-red color scale will be used for GPA on the

4.0 to 2.0 bounded interval. GPAs below 2.0 will map to red. These colors provide an intu-

itive mapping (Brewer 1999)—students doing exceptionally well are shown as green while

those students clearly in trouble are red. Yellow as the intermediary provides an expected

transition between red and green. It should be noted that this color scheme is problematic

for color blind individuals due to the use of red and green. However, for this application,

the use of “stop-light chart” colors provides an extremely intuitive representation to under-

standing the data—in accordance with Silva et al. ( 2007), “...the most striking features

of the image reflect the most important features of the data.” Furthermore, the approach is

flexible and can use other color schemes to represent the trends in the student data—in the

results section, an alternate colorscale is used to depict the data.

Figure 5.2 approximates a traditional line graph and, to some degree, a parallel co-

ordinates view with several notable distinctions. First, the axes do not represent different

dimensions but instead correspond to discrete times (i.e., more similar to a line graph).

Second, each element in the chart (i.e., a single student) does not span every coordinate

axis—instead, the student’s trajectory ends when they either graduate or otherwise end
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their academic careers. Density is the most observable characteristic of the straightforward

approach; however, this comes at the expense of multiple course history lines overwriting

one another. While opacity could be used to preserve the GPA values, color blending would

result in a poor depiction of the results since only the colors are merged, not the underlying

data values. Furthermore, local deviations are not represented in a meaningful way.

The trajectory composition structure needs to (1) show the overall spatial characteris-

tics of the trajectories (e.g., course number progression) and (2) clearly denote the trend in

the student-related attribute (e.g., semester GPA). Spatial characteristics enable the viewer

to comprehend the general shape, density, compactness, and spatial variances of the trajec-

tory set. For example, spatial variances along the vertical axis indicate differences in the

course level for that semester. Furthermore, spatial density corresponds to the distribution

of trajectories—e.g., tightly coupled together or generally spread out. Likewise, student-

related attributes enable the viewer to understand how a trajectory-related attribute changes

over time. For the application, the requirement is to depict both the mean and variance for

the semester GPA.

In contrast to using a length-based parametric representation for the spatial trajectory

(i.e., as in the first use case), a fixed time interval is used instead—i.e., parameterization is

based on discrete time bins aligned with the semesters. This method more closely satisfied

the need to correlate students in the same semester with one another. Earlier attempts to

use the length-based approach resulted in compositions that slowly grew larger across time

due to accumulated error. However, by using the fixed time interval, the error was negated

because each semester re-aligned the students to one another.

5.3.3 Color Rendering

For this specific application, density should indicate the most common student trajec-

tory within the grouping or demographic slice, and color should convey information about
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FIG. 5.3. Color composition. From the trajectory data (upper left), the associated GPAs

are listed for each pixel (lower left). When blending is used for composition, the aver-

age, standard deviation, and density (number of trajectories contributing) are used to select

the appropriate blending color (upper middle). Alternatively, for a woven composition, a

random GPA is chosen, and when combined with the density, selects the appropriate color.
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relevant attributes, especially GPA: both the average value and variability. For the applica-

tion, satisfying these requirements addresses the following domain-specific questions:

• What is the distribution of the number of students?

• How successful were the students on a per semester basis?

• How consistent is performance from student to student?

In order to display intuitive colors for the application, a Green-Yellow-Red color scale,

as described previously, is used. By modulating the saturation by the standard deviation, ar-

eas where contributing trajectories have similar attribute values deepen to saturated colors.

Areas where the contributing trajectories disagree or have a wide variance have low satura-

tion and are washed-out (i.e., gray). Finally, density corresponds directly to the brightness

component, and, against a black background, provides an opaque representation where the

maximum density is reached.

In Figure 5.3, the color blending step is shown in the upper middle of the figure and

is comparable to the earlier diagram in Figure 3.18. The first example pixel has more

trajectories contributing to the composition and therefore results in a brighter color since

the density is higher. The first pixel also has a lower mean GPA value and a higher variance,

resulting in a lower saturation on the lower end of the color scale. On the other hand, the

second example pixel has fewer trajectories (less density) and therefore uses a darker color

value that, when placed against black, provides the intuitive appearance of less density. The

second pixel has a higher mean GPA value but lower variability, resulting in a higher color

value that is more saturated.

The weaving method also uses the same hue-saturation-brightness color model, but

does not modulate the saturation by the standard deviation. Instead, the algorithm ran-

domly chooses a trajectory’s attribute value and selects the appropriate hue component for
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the weaving cell. Density is still used with the brightness component to correctly convey

the number of students and therefore the group’s overall structure. Weaving provides the

viewer with an exact value of a single data point in that region; deviation must be inferred

by looking at neighboring point samples. The lower portion of Figure 5.3 shows a simple

depiction for how the weaving color is chosen. First, a random value is chosen from each

pixel list (lower left). This value selects the weaving color, and the density determines the

brightness (lower middle).

5.4 Results

The approach is used to explore historical course data for undergraduate computer

science and computer engineering students. The following case study provides real-world

results of how trajectory composition can aid in understanding large trajectory sets, espe-

cially when they can be spatially represented and grouped into natural bins. Figure 5.4

composites all 1,456 computer science students together into a single rendering using the

composition process. Both a blended approach (top) and a woven version (bottom) are

shown in the figure. Several features immediately stand out. The average trajectory (the

white line) has a upward slope representing that, in general, most students successfully pro-

gressed to more advanced classes over time. Ninety percent of students were finished by the

tenth semester, while fifty percent never made it past the fifth semester—possibly graduat-

ing if they were transfer students. In regions below the average trajectory, the composition

is tinged red, indicating that the students had lower grades (i.e., closer to Cs or 2.0s) than

those above the line (shown in shades of green). There were significant variations in the

grades, as shown by the washed-out appearance closest to the average trajectory. The vari-

ations can also be inferred from the woven version on the bottom—there are significantly

more red patches below the trajectory. However, these patches also occur above as well, in-
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FIG. 5.4. Blended and woven composition for all computer science students. Color is

mapped to the semester GPA for each student.
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FIG. 5.5. Woven version using a sequential Brewer colorscale.

dicating a range (i.e., variation) of differing semester grades. The remainder of the results

use a small multiples (Tufte 1990) approach to compare and contrast course-grade bins

and specific demographics groups—small multiples is an approach where different combi-

nations of the overall dataset are depicted in a grid to understand similarities and identify

differences.

Figures 5.2 and 5.4 both depict all of the students within our data set. However,

the structure of the overall group becomes much clearer when composited together. For

example, while some density information can be derived from the number of lines in Figure

5.2, it is difficult to determine the central trajectory for data. GPA information is also

much more difficult to infer—especially what the average value is and where it significantly
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FIG. 5.6. Blended composition for all computer engineering students. Color is mapped to

the semester GPA for each student.

deviates. On the other hand, the composition in Figure 5.4 clearly shows the deviations

towards the beginning of the students’ careers and the overall trend throughout the student

trajectories. As an alternate color scheme, Figure 5.5 shows the same composition but

using a sequential red-orange-yellow Brewer colorscale. Because the colorscale contains

only discrete color indices, the woven color model is a more natural fit than the blended

model.

As a comparison to the computer science students, the computer engineering compo-

sition for all students is shown in Figure 5.6. The figure composites 408 students together
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FIG. 5.7. CMSC gateway course trends. Small multiples shown for each gateway

course-grade combination.

(as opposed to 1,456 for computer science). As described in the approach section, fewer

trajectories lead to compositions that are more granular and that have more abrupt transi-

tions. The most surprising aspect was that half of computer engineering students stayed

in the program until the tenth semester, as compared to the fourth semester for computer

science majors. Statistically, the median and average number of semesters for computer

engineering students was ten and eight. For aspiring computer scientists, the median and

average were four and five, respectively. However, the computer engineering data set may

have been incomplete—for instance, there are no computer engineering transfer students.

Other trends are noteworthy. For example, computer science students tended to advance

more quickly to higher-numbered courses. Additionally, computer science students tended

to show more variance in grades throughout their careers, regardless of their progress,

whereas computer engineering students had slightly higher variance if they weren’t pro-

gressing smoothly (note the washed-out appearance for computer engineering students be-

low the line in Figure 5.6.
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The computer science gateway courses, CMSC 201 (Computer Science I) and CMSC

202 (Computer Science II), exhibit the expected trajectories for the A students (Figure

5.7, column one)—specifically, successful advancement towards higher-numbered courses.

However, students who received a B in CMSC 201 (row one, column two) struggled, rel-

ative to those receiving a B in CMSC 202 (row two, column two)—note the leveling off

effect towards the eighth semester for CMSC 201; a B in CMSC 202 had little effect on the

trajectory but did affect grades (i.e., more yellow). This indicates the relative importance

of excelling at the concepts taught in CMSC 201. This is further emphasized by the rel-

ative performance of C students for CMSC 201 versus CMSC 202—namely, the dropout

rate (50th percentile marking, although both occur early) and the ending location. The C

CMSC 201 trend line (row one, column three) indicates higher performance after an initial

struggle (flat initial line). A careful examination of the underlying data reveals that the in-

creased slope was due to students taking high-level math courses (e.g., MATH 381 (Linear

Methods in Operations Research), STAT 451 (Intro to Probability Theory), STAT 454 (Ap-

plied Statistics)). Since the computer science program requires a B or better in both CMSC

201 and 202 and doesn’t require any of these courses, these students most likely switched

to another major. The last column shows the students who took the courses multiple times

before completing with an acceptable grade. CMSC 202 had 126 students who repeated the

course. This group’s perseverance is notable—out of all of the course-grade combinations

for the gateways, these remained in school the longest but in many cases did not progress

to the 400-series courses necessary for graduation.

As stated earlier, one objective for visualizing aggregate student histories is to iden-

tify critical points in the curriculum that determine a student’s success. For the gateway

courses, both the students receiving a B in CMSC 201 and those completing CMSC 202

after multiple attempts should have been able to successfully complete their degree require-

ments. However, the trajectories tell a different story. From these results, in-depth analysis
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should be performed to determine which skills are not adequately addressed for these stu-

dents. Then, the curriculum and appropriate classes/class topics should be modified to

overcome these deficiencies. Alternatively, students falling into these categories could be

offered additional support to supplement their knowledge and skill sets.

Figure 5.8 shows the results for analyzing computer engineering students completing

the gateway courses for their major. Horizontally from left to right, the individual tiles rep-

resent the student’s grade—A, B, C, or multiple attempts, respectively. Each row represents

a single class as follows:

• CMSC 201, Computer Science I

• CMPE 212, Principles of Digital Design

• MATH 251, Multivariable Calculus

• PHYS 122, Introductory Physics II

For computer engineering majors, the gateway courses paint an inconsistent picture

(Figure 5.8). Whereas computer science students exhibited a correlation to the plateau-

ing or regression for poor performance in the gateway courses, computer engineering stu-

dents exhibited this characteristic for stronger grades. In the figure, leveling off is noted

in students who received an A in CMPE 212, MATH 251, and PHYS 122 (first column in

the figure). One explanation is that the course curriculum numbers differs from computer

science–e.g., the leveling off effect is expected due to the recommended courses. However,

a careful review of the recommend curriculum reveals that the average course numbers do

increase monotonically by substantial amounts. A closer look at the actual data did not

reveal significant insights—while the leveling off was confirmed, no apparent reason was

immediately obvious. Students receiving a B in all of the gateway courses (second column)

except for CMSC 201 did not exhibit this feature. C students in MATH 251 and PHYS 122
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FIG. 5.8. CMPE gateway course trends. Small multiples shown for each gateway

course-grade combination.
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progressed similarly to their higher grade counterparts up to the tenth semester. However,

later semesters for MATH 251 C students exhibited a decrease in course progression—as

noted early, low sampling over exaggerates the trend line. Multiple takers in MATH 251

and PHYS 122 showed the strongest signs of struggling. In addition to the slow course pro-

gression, these two groups also showed the lowest semester grades across all of the gateway

groupings—these students were most in need of additional support or intervention. How-

ever, similar to computer science, computer engineering semester grades correlated well

with performance overall–e.g., A students in any of the particular gateway courses exhib-

ited higher semester GPAs (i.e., more green) throughout their history.

The computer science core courses are shown in Figures 5.9 and 5.10. From top to

bottom, the rows represent the following courses:

• CMSC 201, Computer Science I

• CMSC 202, Computer Science II

• CMSC 203, Discrete Structures

• CMSC 304, Ethical and Social Issues in Information Technology

• CMSC 313, Computer Organization and Assembly Language Programming

• CMSC 331, Principles of Programming Languages

Figure 5.10 has the remaining core courses:

• CMSC 341, Data Structures

• CMSC 345, Software Design and Development

• CMSC 411, Computer Architecture
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FIG. 5.9. CMSC core course trends. Small multiples shown for each gateway

course-grade combination.
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FIG. 5.10. CMSC core course trends. Small multiples shown for each gateway

course-grade combination.
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• CMSC 421, Principles of Operating Systems

• CMSC 441, Design and Analysis of Algorithms

Computer science students who received a C in CMSC 201 (first row, third column in

Figure 5.9) experienced significant losses over at least two steps. The initial step, from the

second to third semester, shows a sharp decline in volume (represented by opacity in the

visualization), which, when compared with the actual data samples is accurate—from 58 to

39 students, roughly two thirds. From there, the volume drops by half by the fifth semester

(39 to 19). Since the color opacity corresponds directly to the number of contributing

students (i.e., density), these patterns become quickly apparent.

In addition to the density representation, the saturation of the color (i.e., the standard

deviation of the underlying data) is key to understanding the underlying meaning of the

attribute rendered—in this case, semester GPA. For example, students completing CMSC

203 with an A (row three, column one) and those finishing CMSC 304 with an A (row four,

column one) differed significantly in their accumulated GPAs. The CMSC 203 A students

exhibit a more vibrant green, indicating less variability while the CMSC 304 A students

have a washed-out appearance (i.e., high variability in their semester GPAs). CMSC 304,

Ethical and Social Issues in Information Technology, is a non-technical requirement, and

a student’s performance in CMSC 304 has little to no relation to their academic abilities

in computer science (i.e., no correlation to overall progress—as denoted by the similar

average trajectories for both diagrams). Furthermore, CMPE 304 appears to be an easy

A or B based on the limited number of students receiving a C in the course. CMSC 345,

Software Design and Development, has similar characteristics—i.e., almost no C students.

In addition to the variability in accumulated GPAs, the ending point and direction of

the average trajectory indicates the relative importance of each course/grade combination

to the computer science major’s principles. For example, CMSC 201, CMSC 202, CMSC
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203, and CMSC 411 all show widely varying fiftieth percentile marking locations. The fifti-

eth percentile is marked on all of the images because it identifies where fewer data samples

(i.e., fewer students) begin to cause the average trajectory to have erratic movements. The

horizontal and vertical location of the fiftieth percentile marking indicates the significance

of these courses for the overall progression of students. For example, the vertical mark-

ing at the higher-numbered course level indicates more students progressed to higher-level

courses. Horizontal locations can be ambiguous—an earlier marking may mean that more

students dropped out of the major or that students graduated earlier. To understand the hor-

izontal position of the fiftieth percentile mark, the vertical position needs to be taken into

account.

The core computer engineering courses describe the required classes across the engi-

neering curriculum. Figure 5.11 shows the results for students completing the following

courses with “A”, “B”, or “C” grades (left-to-right columns in the figure). The core courses

are as follows (top to bottom in the figure):

• ENES 101, Introduction to Engineering

• CMPE 212, Principles of Digital Design

• CMPE 306, Basic Circuit Theory

• CMPE 310, Systems Design and Programming

• CMPE 314, Digital Electronics

• CMPE 320, Probability and Random Processes

• CMPE 450, Capstone I

• CMPE 451, Capstone II



www.manaraa.com

118

FIG. 5.11. CMPE core course trends. Small multiples shown for each core course-grade

combination.
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The premature leveling-off effect is most pronounced for B and C students in ENES

101, indicating the relative importance of the concepts taught. Leveling-off does occur nat-

urally in other courses, but these cases show that the effect did not occur until the student

had reached the 400-series courses (e.g., A students in CMPE 212 and CMPE 451). In

many of the CMPE cases, there just weren’t enough trajectories (i.e., students) to smoothly

aggregate the data—35 is the highest number of students in Figure 5.11. The low num-

ber of students led to exaggerated distortions in the compositions. For example, students

completing CMPE 212 with a C (second row, third column) show a sharp jump at the end

of their careers towards lower number courses. While the underlying data does show a

significant decrease at the fifteenth semester, the composite exaggerates this amount. The

root cause of the problem is the limited number of students that contribute to the end of the

trajectory due to the length averaging modifications made for this dataset. Some possible

fixes are outlined in a later section.

The first three math courses (MATH 150 (Precalculus), MATH 151 (Calculus I), and

MATH 152 (Calculus II), Figure 5.12, rows ones through three, respectively) show similar

trends for students receiving Bs or Cs. MATH 150 is technically not required for computer

science; students enrolled in this course were likely addressing gaps in their high school

programs. However, students not receiving an A for this course showed the worst trends

for all of the groups—i.e., very shallow progression, an earlier 50th percentile for students

leaving the program, and lower semester GPAs, as depicted by the red coloring. MATH

150 B and C students also had relatively narrow densities, indicating that the students

were restricted to very similar courses for their (short) computer science careers. The red

areas are most prevalent for C students in either MATH 150 or MATH 151, indicating the

correlation between mathematical ability and computer science success. The trend is not

quite as apparent for the remaining math courses, possibly revealing independence between

the course concepts and the needs of computer science.
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FIG. 5.12. Core math for computer science students
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Students receiving an A for the required math courses (column one in Figure 5.12) had

a much stronger tendency for A GPA semesters than those in either the B or C categories.

This held true regardless of which side the student fell on from the average trajectory. Note

the green areas occurring on both sides of the average trajectory for the A math students

(i.e., column one) as compared to the other grades—regardless of the student’s trajectory,

they retained high semester GPAs throughout their academic careers.

For computer engineering students, MATH 151 (Calculus I) most heavily influenced

later course progression. In particular, MATH 151 C students showed the overall worst

trend in their course progression. MATH 150 students also struggled regardless of which

grade they received. Since this course is not required, these students most likely entered the

program at a disadvantage and were never able to fully recover. The overall grade remains

relatively fixed for MATH 151, MATH 152, and MATH 221—namely, that the course

grades correlated well with the student’s semester grades. For MATH 225 and MATH 251,

however, the B and C students had roughly equivalent semester grades. This may indicate

that proficiency in these courses does not overly affect a student’s progression for computer

engineering.

5.4.1 Demographic Compositions

To compare high school GPA partitions with SAT Math performance (Figure 5.14),

the students were first binned in arbitrary increments of 75 for their SAT Math scores (e.g.,

800 to 725, 725 to 650). Next, the students were sorted by their high school GPA. From

the sorted list, partitions were calculated to match the number of students in the SAT Math

bins. For example, there were 100 students in the highest SAT Math bin. Students from 1 to

100 in the sorted GPA list were then chosen for comparison against the highest SAT Math

bin (their high schools GPAs ranged from 5.0 to 4.21). Due to multiple students falling into

discrete GPA bins, the number of students between the corresponding SAT Math and high
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FIG. 5.13. Core math for computer engineering students
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FIG. 5.14. High school GPA versus SAT Math for computer science students

school GPA bins were not exactly equivalent.

The results between the high school GPA partitions and the corresponding SAT Math

bins did not show significant differences—especially in the three highest groups (Figure

5.14, columns one through three, rows one and two). For example, the top SAT Math bin

(i.e., 800 to 725) compared very similarly to the highest high school GPA bin (i.e., 5.0 to

4.21). The SAT Math results did show a higher variance in semester GPAs as shown by

the somewhat washed-out appearance in the composition. However, there was only a slight

increase in the standard deviation. The fourth column does show a degree of variation be-

tween the separate bins. In particular, the high school GPA group has a steady progression

towards higher-numbered courses, indicating some amount of success despite the lower

semester grades. The equivalent SAT Math grouping shows a leveling off around the fifth

semester followed by a sharp dive in the eighth. Other than this last example, these results

are contrary to conventional wisdom—high school GPA does not appear to be significantly

more important than SAT Math scores.

Except for the lowest performing bins, every computer engineering curve for both

the high school GPA and SAT Math partitions exhibited significantly lower performance

below the curve (i.e., students progressing more slowly than average for the bin) versus
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FIG. 5.15. High school GPA versus SAT Math for computer engineering students

FIG. 5.16. Final GPA partitions for computer science students

those above the curve. This is shown as the stronger green/yellow color above and the

mostly red color below. Unlike their computer science equivalents, the highest high school

GPA bin (column one, row one) showed the smoothest progression towards higher-level

courses and the highest semester GPAs, as depicted by the strong green color. The second

SAT Math bin (column two, row two) shows the strongest monotonically increasing trend

for the SAT Math row. The third bin appeared to be most similar for the corresponding

high school and SAT Math scores.

Both the computer science and computer engineering final GPA partitions (Figures

5.16 and 5.17, respectively) trend as expected: students with high final GPAs (left-hand
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FIG. 5.17. Final GPA partitions for computer engineering students

side) had much greener compositions that progressed more smoothly to advanced courses

than their lower GPA counterparts (right-hand side). Surprisingly enough, the saturation

was fairly consistent across all of the small multiples, indicating little variance for semester

GPA when grouped and binned by the final GPA. However, the third bin for both data sets

(i.e., GPA between 2.5 and 3.0) showed higher levels of variance.

When compared with students entering as freshmen (Figure 5.18, top), transfer stu-

dents (bottom) started at a higher course number due to prerequisites/early course work

already being completed. However, the remaining trend is roughly the same, including the

number of semesters completed. This may indicate that transfer students don’t actually save

any time or money by completing the initial courses at another university. Unfortunately,

the provided dataset did not show any computer engineering students that transferred into

the program.

5.4.2 Identifying Plateaus

During discussions with academic subject matter experts, the flat-line trend late in a

student’s history was identified as particularly interesting. To identify other course-grade

pairs that exhibited the same characteristic, the student course history was analyzed using

clustering to find commonalities in course-grade trajectories. In order to use clustering,

a distance metric had to be defined to characterize the feature of interest—in this case, an
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FIG. 5.18. Transfer status for computer science students



www.manaraa.com

127

initial upward slope followed by either a plateau or decrease in performance toward the end

of the student trend line. A distance metric was created to compare the students’ trajectory

(i.e., slope) irrespective of the coordinate spatial position. To accomplish this goal, each

spatial trajectory was broken into three parametric parts. For each parametric part, the

normal vector was calculated. To compare two trajectories, the root mean square of the

angle difference between the two comparison trajectories was calculated.

The items for the clustering algorithm were derived from each possible letter grade and

course combination. Each combination was aggregated and the average spatial trajectory

was calculated for that specific pair. For example, all students who received an A in CMSC

201 were averaged into the same trajectory and the “CMSC 201 A” trajectory was then

compared against all other course grade combinations.

Figure 5.19 shows the main clusters resulting from the clustering algorithm. In the

figure, six separate clusters are shown. Within each tile, the course-grade trajectories (col-

ored by grade) and the overall trajectory (white) are shown. In addition to the trajectories,

the individual course-grade combinations that create the trajectory are shown in the bottom

of each tile. All of the tiles show leveling off or dips late in the students’ careers. Cluster

24 is of particular interest since all of the grades show As but a sharp dip occurs at semester

13. A careful examination of the underlying data shows students taking either PHYS 122

or lower numbered math courses—possibly to satisfy degree requirements. Across many

of the course-grade trajectories, this was a common theme late in a students career—i.e.,

taking early requirements. Cluster 21 is also significantly different. Most of the courses

represent early general science or engineering topics. As one can see, the inability to grasp

fundamental scientific concepts is fatal to progressing to higher course numbers. As a result

of this analysis, educators can revise the curriculum to address identified deficiencies—for

instance, by moving core concepts (e.g., math) to precede courses that require that skill set

or by providing refreshers.
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FIG. 5.19. Cluster results for average course-grade trajectory bins (computer science)
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5.5 Complete Population Clustering

In addition to grouping the students by their course-grade combinations or natural

demographic identities, they were also clustered by their course progression. This deter-

mined the most common course curricula and to see additional correlations to demographic

information. To cluster the data, a distance metric was developed to compare two student

course histories and calculate a similarity score. The results of the clustering process were

then fed into the composition visualization technique to understand trends in student GPAs.

However, while anomalies and patterns were identified in the visualization, understanding

the underlying cause was often difficult.

5.5.1 Clustering Distance Metric

Clustering algorithms require a distance metric which compares two student histories

and provides a score on their similarity. This metric is used by the clustering algorithm to

associate the most similar students into distinct partitions. In order to satisfy the goals, the

distance metric should yield low scores for students who have similar or nearly identical

histories; variances in when, or whether, the same courses are taken should result in higher,

or less similar, scores. When a course is taken at a later point in a student’s history, this

may indicate low academic performance or repeated attempts to pass the course. Courses

that are unique to one of the students occur more frequently in specialized course tracks. In

the computer science dataset, specializations may exist in networking, graphics, databases,

etc.

Because general education courses in unrelated areas (e.g., political science, history)

are not strongly correlated with student performance in the computer science curriculum,

these courses are ignored by the distance metric. However, related areas such as mathemat-

ics and engineering are included and compared along with the computer science curriculum
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FIG. 5.20. Course comparison example. For courses in common, a root mean square

calculation based on the relative time for each course is used. In cases where one student

did not have a corresponding match (courses in red), an empirically derived constant is

added to the final sum.

classes.

Unlike other research efforts that focus on student subject choices (Ferral 2004) and

preferred topics (Quevedo et al. 2009), the distance metric accounts for the temporal na-

ture of a student’s history. The distance metric is the root mean square of the mean of the

sum of the differences of the course occurrence with respect to the relative semester in-

dex. For example, if Students A and B take “CMPE 212” in their first and third semesters,

respectively, then four (the squared value of three minus one) will be added to the accumu-

lated sum. If, however, they both take the course in the same semester, then the sum will

not be incremented (i.e., zero squared). In cases where the course is absent (i.e., one of

the students did not take the course), an empirically derived constant is added to the final

calculation. By adding this constant, students who did not share courses in their histories

are significantly separated from one another. Figure 5.20 shows a graphical depiction of

the distance metric scoring for two simplified student histories.

Students who repeat the same course are handled as a special case. When the distance

metric attempts to find a matching course for Student A, it starts by examining the same
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semester index for Student B (i.e., if CMSC 341 was taken in Student A’s fifth semester,

the algorithm would first look for that course in Student B’s fifth semester). If Student

B’s semester does not have the same occurrence, then the semesters adjacent (i.e., the one

right before and the one right after) to the algorithm’s starting semester are examined for

the course. If a match is still not found, then the adjacent semesters are searched in an

incremental sequence until a match is found. This greedy approach guarantees that the

closest course (i.e., the minimum distance) will be added to the accumulated sum. Once a

match is found, the distance metric’s state is updated to exclude the matching course from

future comparisons. By applying this heuristic, repeated courses can be accounted for in a

systematic function that satisfies the goal to separate students with course variations.

5.5.2 Clustering Results

Figures 5.21 and 5.22 depict the largest clusters for computer engineering and com-

puter science, respectively. For both figures, the rows correspond to the following attributes

(from top to bottom): High School GPA, College Final GPA, College Accumulated GPA,

and Semester GPA. The columns denote each cluster—for computer engineering (Figure

5.21), the cluster sizes from largest to smallest (left to right) are 41, 29, 19, 16, and 12. For

computer science, the clusters were significantly larger because of the data set size—176,

88, 86, 79, and 33, respectively.

The two largest clusters in Figure 5.21 show that most students completed their studies

roughly around the 400-level series. Furthermore, these students required around eleven

semesters to complete the work. Judging by the slightly washed-out appearance in the final

GPA tile, a minor amount of variation in grades occurred (columns one and two, row two).

Also, this group exhibited fairly good high school GPAs, as shown in the first row of the

image. The overall compactness of the trend lines (excluding the end), especially for the

second largest cluster (column two) reveals that the clustering metric closely aligns with
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FIG. 5.21. Computer engineering top clusters
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the visualization representation—e.g., that the students in the cluster took similar courses

in the same semesters. The ends of the trajectories do show an expansion, probably due to

a lower sampling interval as students graduated. This may also be due to the earlier noted

trend of students taking low numbered graduation requirements. The lower portions at the

end of the renderings exhibit the over-representation artifact of the composition process—

the areas add no additional value but draws the eye to the pattern.

The fourth largest cluster (column three in Figure 5.21) struggled more to progress

to the higher-numbered courses. The average trajectory ended above the 200-level series

but not quite at the 300-level. The students also exhibited lower GPAs in their accumulated

college GPAs (i.e., the red appearance for the fixed color scale in the second row) but

had good grades in high school (row one). The semester GPA attribute also exhibited an

interesting pattern (column four, row four). In particular, there was less variability in the

student grades early in their coursework, as shown by the stronger, more saturated red

values. Later in their academic careers, the variability increased indicating that a portion

of students began to improve in their grades. One distinct possibility is that the “natural”

computer engineering majors improved their semester GPAs once they were taking only

their major courses—although this is unlikely due to the inability to progress to higher

numbered courses.

The clustering of computer science majors exhibited more interesting trends than the

computer engineering students (Figure 5.22). The largest cluster (first column) represents a

majority of transfer students. The average trajectory begins higher (slightly above the 200-

level) and quickly progresses to the 400-level series in under eight semesters. The cluster

does have significant variability in the high school GPAs (row one) but that’s due to transfer

students not having high school GPAs in their records. As with the computer engineering

students, the end of the trajectory exhibits large variability in the course numbers.

The second largest cluster for computer scientists (Figure 5.22, column two) shows



www.manaraa.com

134

FIG. 5.22. Computer science top clusters
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students failed to complete the introductory courses. Judging by their lack of progress, very

few of these students made it past the fourth semester. Their high school GPAs (row one)

shows some variability but, in general, edging towards a “B”.

The third and fourth clusters (columns three and four) show two different progressions

that end in the same way—around the sixth or seventh semester without achieving the

necessary 400-level series courses. The primary difference is that cluster three (column

three) progresses more quickly at the beginning while cluster four (column four) has a

slower uptake at the beginning. Judging by their high school GPAs (row one), cluster four

had higher GPAs in high school which may account for the higher variability in cluster

three’s beginning distribution (width).

The fifth largest cluster (column five) also represents an even number of transfer stu-

dents. The cluster is more compact than the other transfer student cluster (column one).

However, the cluster starts at a slightly lower course number and ends one semester later

than the largest cluster in the first column. Based on the final GPA (row two), the fifth clus-

ter performed slightly better (more saturated green) than the first cluster—possibly because

the students completed some introductory or prerequisite courses at the university.

While clustering students according to the order and semester for courses taken pro-

duced interesting anomalies and discoveries, it was very difficult to narrow in on the reason.

Patterns did emerge in the average trajectory, semester GPAs, and variability in course se-

ries, but the underlying issue was elusive due to the amount of concurrent data and the

interdependencies between the semesters for individual students. Binning the students by

their course-grade combinations was easier and more intuitive to understand than attempt-

ing to cluster them by their course ordering.
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FIG. 5.23. Computer science gender differences. The left-hand renderings show the results

of the semester grades while the right-hand tiles show the difference images. Note that

computer science females had higher grades even though they had slightly lower progres-

sions.

5.5.3 Differencing Student Groupings

While the small multiples approach reveals differences when the trajectories vary sig-

nificantly, understanding subtle differences between the student groups is difficult. By

modifying the approach to show the differences between two compositions, these varia-

tions were able to be more easily detected. To modify the approach, student subsets (e.g.,

gender, gateway courses) are compared against the entire student population. The compo-

sition process remains mostly the same—first, the entire student population is rendered and

then the subset is rendered using the same frame of reference (i.e., same average trajectory

and parametric mapping) separately. This process results in two separate compositions that

can be compared pixel-by-pixel.

To render the difference composition, a Brewer colorscale (Harrower & Brewer 2003)

based on a divergent color scheme of seven values is used. The lower three values show

negative differences while the upper three show positive ones. The middle value is used

to denote no change. The composition itself still implements the density functionality to

provide “dimming” in areas where fewer students existed.

The results are revealing especially when subtle differences exist. Figure 5.23 shows
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FIG. 5.24. Computer science transfer comparison. The left-hand renderings show the re-

sults of the semester grades while the right-hand tiles show the difference images. Note

that grades did not significantly vary but the average trajectory for transfer students started

at higher course numbers—due to completed pre-requisites.

both results—the left-hand tiles show the male and female trajectories for the computer

science data set using just the composition technique. While the results look very similar,

the difference images on the right-hand side reveal subtle variations in the semester grades.

While the males had very little differences from the overall student set, the females had

slightly higher grades on both sides of the average trajectory. To draw out the minute dif-

ferences, a graduated, discrete binning range is used. The largest bin covers the maximum

difference to a quarter of the maximum value. The second largest bin covers from a quar-

ter to an eighth of the maximum difference, and the smallest bin covers the eighth to the

sixteenth. Therefore, the middle bin ranges from the negative sixteenth to the positive six-

teenth. Mathematically, if floor if the minimum value and ceil is the maximum value, the

bins are arranged as follows: [floor,floor/4], [floor/4,floor/8], [floor/8,floor/16],

[floor/16,ceil/16], [ceil/16,ceil/8], [ceil/8,ceil/4], and [ceil/4,ceil]. To show the dif-

ference in the trajectory, the population trajectory is depicted in white while the subset

trajectory is shown in yellow. For the male / female dataset, these are almost indistin-

guishable from the overall population. However, by comparing the overall grades using the

differencing approach, the slight improvement of the female students becomes recogniz-

able.



www.manaraa.com

138

FIG. 5.25. Computer science gender density differences. In addition to showing differences

in the application data (e.g., GPA), the difference composition can also denote differences

in density.

However, not all demographic comparisons show significant variations in the semester

grades. Figure 5.24 depicts the results for transfer students. As with the gender example,

the left-hand tiles show the composition while the right-hand images render the difference

image. Unlike the gender example, both subsets (i.e., non-transfer/freshmen and transfer)

have vary little variation in semester grades throughout their academic careers. However,

by showing the average trajectory for both the subset in yellow and the entire population in

white, the increased starting position for transfer students becomes apparent. The increased

position is due to transfer students having already completed the lower course numbers at

their starting college. Another takeaway lesson from this example (and previously men-

tioned) is that transfer students complete the program in roughly the same time frame as

their freshmen counterparts.

Since the difference composition has access to the underlying data for both compo-
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FIG. 5.26. Computer science high school GPA versus SAT Math density differences.

sitions, it can also calculate the differences in the density. Figure 5.25 shows the density

difference for gender. In this figure, the tan and brown colors correspond to higher densities

of female students. As one can see, female students were slightly more prevalent for higher

course numbers early (i.e., semester one and two) while males were more prevalent in later

semesters (i.e., semester five and onward). As with the previous difference compositions,

the bins are graduated to maximize the contrast for slight differences. Furthermore, both

data sets were normalized to percentiles—e.g., the difference compares the percent of male

students to the percent of female students and not the absolute numbers.

Figure 5.26 shows a more interesting density comparison. In this figure, the compo-

sition is comparing the densities between high school GPA and SAT Math students within

their corresponding bins. In this figure, browns and tans represent higher densities for SAT

Math; blues indicate higher high school GPA densities. For the most successful (i.e., left-

most) bin, SAT Math had an edge in overall course number progression throughout their

academic careers. However, that trend is reversed for the second bin—the high school GPA

students took higher-numbered courses, again, throughout their studies.

5.6 Domain Expert Input and Experiences

I solicited input from several educational domain experts during the design and real-

ization phases, including two Undergraduate Program Directors, one Accreditation Coor-
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dinator, and one scholarship program director. Their input is reflected in several aspects of

the current system, including the capability to show disaggregated groups, the overlay of

one group on another, the orientation of the images, and features to support drill-down to

specific clusters and trajectories.

These domain experts have also engaged in extended interaction sessions with the

completed prototype. While multiple known trends were confirmed during these sessions,

unexpected relationships were also discovered in the data. For instance, the importance of

a student really doing well in the first computer science gateway course over the second

was an unexpected find in the data. This could indicate either that the concepts in the first

course were much more critical to success than the second course or that. This insight into

the critical importance of the first course could be used to identify interventions to help

students who don’t start off as strongly as they should.

In addition to determining which courses most prominently influenced a students ca-

reer, the demographic analysis also revealed additional insights to educators—most no-

tably, the high school GPA comparison with SAT Math. The results were contrary to tradi-

tional beliefs that high school GPA is more critical to success than standardized test scores.

By identifying these anomalies, educators can delve into the underlying details to under-

stand the nature and cause of the trend. This insight could be used to fine-tune admission

standards or to identify students who would benefit from early intervention.

5.7 Issues and Limitations

Multiple issues and limitations became apparent as the results of the composition pro-

cess were analyzed. The primary limitation was identifying how to group the students to

reveal trends of interest. While a small multiples approach was used to organize the visu-

alizations according to course-grade combinations, this process required manual analysis
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to identify differences and important anomalies. Furthermore, the clustering of students by

their course history did not reveal as many insights as hoped. A possible solution would be

to cluster the small multiples results. This would group the first stage aggregate trajectory

results (i.e., course-history combinations) into partitions to better identify similar average

trajectories and anomalies. In effect, this would decrease the manual review and increase

the probability that important features were detected.

Transfer students also presented an issue. While the start of their trajectories began

at the first semester index, calculating their initial offset might have yielded more coher-

ent compositions. For example, because all student trajectories began at the first semester

(spatially), transfer students tended to pull the average trajectory higher in the beginning.

If, however, a method could be identified to place them in their true offset, then the com-

position would not have been skewed by the transfer-student bias.

The last issue was the visual banding caused by the enforced temporal rigidity. This

artifact did not occur in the first use case and was the result of students taking widely

varying course numbers towards the end of their academic careers. These artifacts were

also related to the reduced sample size towards the end of the student career—e.g., after the

fiftieth percentile marking, the average trajectory was much more likely to fluctuate, due to

the small number of students contributing to the calculation.
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Chapter 6

LESSONS LEARNED

This chapter addresses how to apply the approach to a new dataset. Specifically, the

following questions will be addressed:

• Is a trajectory data set applicable to this approach?

• What preprocessing steps need to be applied to the data set?

• How should the clustering distance metric and trajectory averaging algorithm be de-

fined?

• How can one tell if the trajectories were successfully clustered?

6.1 Approach Applicability

As discussed in the introduction and use-case chapters, the approach is designed for

entity-based trajectory data. Specifically, trajectories where analysis of the entities is

needed. Analytic results and conclusions should be focused on how the entity changes

over time as a result of the environment or as the entity evolves over time. The two docu-

mented use cases exemplify these objectives. RoboCup results are used to understand the

state of the soccer match and how the offense is moving the ball across the field (i.e., the
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environment). Student course history data is solely focused on the student’s progression

through academia—that is, how the entity evolves over time. In the latter case, the envi-

ronment is simplified but attempts to model the higher dimensional knowledge and skill set

acquisition.

The dataset should also contain a large number of trajectories with a firm expectation

that the data lends itself to clustering. As shown in the test data section, numerous, cohesive

trajectories produce smoother results that leverage the composition’s approach—that is,

aggregate analysis techniques yield more insight than a more traditional rendering of the

individual trajectories.

6.2 Preprocessing Steps

Preprocessing is often necessary to segment the trajectory dataset into meaningful sub-

trajectories. For instance, the first use case required that the RoboCup match information

be separated along discrete team possessions. In a similar fashion, GPS data is often “pre-

clustered” to identify interesting locations (Palma et al. 2008) (Marketos 2009) (Lee et

al. 2008) or to group similar entities together (Jeung et al. 2008) (Li et al. 2007). To

a certain degree, the second use case exemplifies this step—that is, the trajectories were

grouped together not by their similarity, but by the individual grade a student made in a

particular course.

At one extreme, no preprocessing is required—for example, the student history data.

On the other hand, every trajectory is broken into discrete components for further process-

ing (Lee et al. 2008) (Lee, Han, & Whang 2007). Most applications, however, would

need to logically segment the trajectories into sequences that naturally indicate the start

and stop of an entity’s behavior. For example, Lee et al. 2008 and Palma et al. 2008

identify interesting locations in large trajectory populations. To preprocess these data sets,
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the individual trajectories between interesting locations would be extracted for further clus-

tering. The resulting analytics would be to determine the most common paths between the

identified locations.

6.3 Distance Metric and Averaging Algorithm

The most relevant detail for the distance metric is to compare the “best” corresponding

parts of the trajectories. While subjective, several measures are of importance. First, if

common begin and end points can be identified, those should be used to constrain the

trajectories. For instance, if interesting locations can be identified from other approaches,

the paths between these locations would be applicable to my approach. Natural changes of

state are also analogous—in the RoboCup example, changes of possession marked natural

boundaries for the data.

Second, If common resynchronization points exist, they should be used to align the

trajectory point comparison and averaging algorithm. For example, in the student history

data, semesters formed a common alignment point. By resyncrhonizing at each location,

the underlying visualization distance measurement was correctly modeled. Early attempts

to use a length-based parameterization resulted in a “funnel” in the composition. The funnel

was a direct result of the accumulated error from the lack of synchronicity across the student

set.

Furthermore, the distance metric should appropriately handle the temporal nature of

the trajectory data. For instance, if the closest point comparison is used, the temporal

ordering of the trajectory may be distorted or lost during the comparison (and resulting vi-

sualization). The parametric form of the trajectory is a natural representation that correctly

models the temporal nature of the data—e.g., by monotonically increasing throughout the

comparison. In the use case data sets, both length-based and duration-based parametric
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representations were used. The latter (duration-based) was chosen for the second use case

because the trajectories needed to be “re-synced” at semester boundaries. However, for the

RoboCup data, length-based was more appropriate since time-varying plays would distort

the overall results.

6.4 Cluster Results

Lastly, the most effective way to verify and validate the results is to examine the vi-

sual compositions. These provide a quick, intuitive check to see if the visual metaphor

accurately represents the underlying data. If possible, a well-known, previously identified

pattern should be identified in the composition. Common patterns provide a starting point

to verify known trends and to begin to identify “one-off” discoveries in the data. Further-

more, these “knowns” build confidence in the approach and sense-making abilities of both

the techniques and the analysts.

In addition to validating known patterns, the visualization process can quickly identify

deficiencies in the distance metric. As discussed earlier, the length-based parametric ver-

sion failed to effectively capture the corresponding locations for the student history data.

Two issues were the underlying cause. First, students who attended for a different number

of semesters caused incorrect points to compared to one another. For example, if one stu-

dent attended for 13 semesters, then that student’s 13th semester would be compared to the

end of every student’s history—whether it be the 11th, 6th, or 18th. To resolve this issue,

the distance metric and composition process was modified to align to the semester index.

The second issue was that the length-based parametric representation accumulated

errors over the students’ histories. While minor, the error accumulated because students

that had steep slopes in their trajectories had slightly longer trajectory segments. This

cause the distance metric to slowly increase over the course of the student history. As
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FIG. 6.1. Parameterization mismatch. When trajectories are incorrectly represented, the

resulting visualization (right) shows misleading trends as compared to the correct repre-

sentation (left).

described earlier, the solution was to parameterize over the duration of the trajectory forcing

resynchronizations of the trajectories across time.

Figure 6.1 depicts both of the parameterization issues with the student data. In the

figure, several issues are immediately apparent with the right-hand tile. First, the average

trajectory ends abruptly slightly after the fifth semester. This is a result of the distance and

averaging metric not incorporating the varying number of student semesters. Second, the

composition shows an exponentially increasing distance by the end of the trajectory. This

is due to the distance metric rapidly increasing because the average trajectory is too short.

This feature also occurs when the length-based parametric representation is used for the

data as a result of the accumulated error.
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Chapter 7

FUTURE WORK

Areas of future work fall into three categories: (1) overcoming visualization limita-

tions with the composition process, (2) developing additional automation to refine results

for human analysis, and (3) combining the composition process with traditional visualiza-

tion techniques to increase interactivity and overcome composition limitations.

Several limitations exist with the visualization and composition process. First, even

though a level set is used to deconflict the trajectory contributions in areas of over- and

underrepresentation, the composite visualization still “sweeps” duplicative values in ar-

eas of overrepresentation while abbreviating values in underrepresented sections. A post-

processing step to the level set calculation could be added to ensure that each trajectory

attribute value received an equal amount of image real-estate. The overall risk of such an

approach would be the dispersion of the correct spatial location for each parametric trajec-

tory value—e.g., even though values are duplicated in overrepresented, swept areas, that is

still the most appropriate location for them to contribute. Second, the technique does not

work with overlapping trajectory segments. For example, if the average trajectory had a

loop or crossed over a previous section, the level set process would (incorrectly) overwrite

sections of the data. While multiple sub-visualizations could be used in areas of contention,

that approach would be an imperfect solution for the problem.
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As alluded to in the issues and limitations for the student course-history use case,

techniques to prioritize which groups of trajectories (and their related compositions) need

to be developed to more effectively handle the volume of data. This is especially true in

cases where the clustering results in an overwhelming number of partitions or when there

are many application-specific attributes. In summary, either a clusterer for clusters or a

method to analyze each resulting composition would significantly enhance a user’s ability

to handle the volume of data and the combinatorics necessary to try each setting.

The last category for future work is combining the approach with other visualization

techniques and interactive paradigms. While the approach does provide a method to com-

bine thousands of trajectories while retaining information about the application-specific

attribute and overall spatial characterization of the group, traditional visualization tech-

niques can provide additional insights. Most notably, brushing and linked visualizations

(Keim 2002) would enable the integration of traditional techniques with the approach.
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Chapter 8

CONCLUSION

With this research, I addressed a difficult data analysis problem that has multiple real-

world applications. By combining machine automation with intuitive and insightful visual-

ization techniques, new light was shed on trajectory populations not currently addressed by

traditional visualization techniques. In order to show the value, the technique was applied

to two application domains—artificial intelligence agents and student course-history data.

The results of the analysis led to new discoveries about both datasets. However, several

shortcomings were identified with my approach that require follow-on research to address.

Specifically, I developed a straightforward approach to clustering two-dimensional

trajectory populations. By basing the metric on a parametric model of a trajectory, the

metric correctly and efficiently handled trajectories of varying fidelity. Furthermore, the

parametric values were tailored for specific applications—in the use cases, length-based

parameterization of the trajectory data was effectively used for a spatial application while

a time-based version for the second use case was required. Furthermore, through the use

cases, I justified the decision process for the underlying model by providing detailed results

with real-world conclusions and recommendations.

Additionally, I created an aggregate visualization technique that intuitively captures

the underlying trajectory population. This technique visually captures the shape of the av-

149



www.manaraa.com

150

erage trajectory, spatial variability of the population, and the mean and standard deviation

of application-specific trajectory attributes. By effectively combining all of these charac-

teristics, viewers can intuitively understand the rendered trajectory population and make

analytical conclusions. Additionally, I integrated and implemented two separate render-

ing schemes that discerned different aspects of the underlying attributes. The visualization

technique complemented the clustering approach because it enables a viewer to determine

if clustering produced accurate results.

In order to demonstrate the effectiveness of my approach, the techniques were applied

to two different applications: RoboCup soccer and student course-history data. These ap-

plications showed the general applicability of the approach since the representations and

goals significantly differed. By applying traditional visualization techniques to the first use

case, I demonstrated limitations for understanding the underlying data using these types of

techniques. However, by applying the clustering and visualization techniques, I was able

to provide novel and intuitive results for identifying (through clustering) and analyzing

(through visualization) common plays within the tournament. By also including RoboCup

attributes in the rendering, I provided additional details to the viewer to better understand

the individual trajectory data.

Through the analysis of student course-history data, I tailored the visualization ap-

proach to match the analytical objectives. By choosing to group the data by its natural

binning, I effectively determined which courses and topics have the largest impact on a

student’s academic career. Although the clustering algorithm was applied, the results were

not as meaningful as the aforementioned natural bins. Furthermore, I supplemented the

approach to compare the differences between individual student groupings and the overall

student population. This technique enabled viewers to determine and understand subtle

differences in subsets of the population.
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